K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH 

a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC 

b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH 

Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .

Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông. 

Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng: 

a) Tam giác AHB đồng dạng với tam giác CHA .

b) BAC = 90o 

Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC 

Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng 

Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng : 

a) BH.BD=BK.BC

b) CH.CE=CK.CB

c) BH.BD+CH.CE=BC2 

Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng : 

a) AB.AE=AC.HC

b) BC. AK=AC.HC

c) AB.AE+AD.AK=AC2 

3
13 tháng 7 2015

sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu

19 tháng 6 2016

nhieu

Bài 1: Cho hình bình hành ABCD, E và F lần lượt là trung điểm của AB,CD. Gọi M,N lần lượt là giao điểm của AF, CE với BD.a) CM: tứ giác AECF là hình bình hànhb) CM: DM=MN=NBc) CM: MNEF là hình bình hànhd) AN cắt BC ở I, Cm cắt AD ở J. Cm: IJ,MN,EF đồng quy.Bài 2 : Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH vuông góc với AB ( H thuộc AB), MK vuông góc với AC ( k thuộc AC).a) CM: Tứ giác...
Đọc tiếp

Bài 1: Cho hình bình hành ABCD, E và F lần lượt là trung điểm của AB,CD. Gọi M,N lần lượt là giao điểm của AF, CE với BD.

a) CM: tứ giác AECF là hình bình hành

b) CM: DM=MN=NB
c) CM: MNEF là hình bình hành

d) AN cắt BC ở I, Cm cắt AD ở J. Cm: IJ,MN,EF đồng quy.

Bài 2 : Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH vuông góc với AB ( H thuộc AB), MK vuông góc với AC ( k thuộc AC).

a) CM: Tứ giác AKMH là hình chữ nhật.

b) E là trung điểm của MH. CM: BHKM là hình bình hành.

c) CM: 3 điểm B,E,K thẳng hàng.

d) F là trung điểm của MK. Đường thẳng HK cắt AE tại I và AF tại J. Cm: HI=KJ.

Bài 3 : Cho tam giác ABC vuông tại C. Gọi M,N lần lượt là trung điểm của BC và AB. Gọi điểm P đôi xứng với M qua N.

a) tứ giác ANMC là hình gì? Vì sao?
b) CM: tứ giác MBPA là hình bình hành.

c) CM: tứ giác PACM là hình chữ nhật.

d) Đường thẳng CN cắt PB tại Q. CM: BQ=2PQ

Bài 4: Cho tam giác ABC có M,N lần lượt là trung điểm của AB và AC.

a) tứ giác BMNC là hình gì? vì sao?

b) Gọi I là trung điểm của MN. Đường thẳng AI cắt BC tại K. CM: AMNK là hình bình hành

c) tam giác ABC cần có điều kiện gì thì tú giác AMNK là hình thoi.

d) Với điều kiện trên của tam giác ABC, vẽ KH vuông góc với AC tại H. đường thẳng KH cắt MN tại E. CM: Tam giác AME là tam giác vuông.












































MÌNH CẦN GẤP MẤY BÀI NÀY. AI LÀM ĐỦ MIK TICK CHO NHA!

0
Câu 1: (3,5 điểm). Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC, từ M kẻ MD ⊥ AB tại D và ME ⊥ AC tại E (D ∈ AB, E ∈ AC)a) Chứng minh: Tứ giác ADME là hình chữ nhật.b) Gọi F là điểm đối xưng của điểm M qua điểm E.Chứng minh: tứ giác AMCF là hình thoi.c) Gọi I, K lần lượt là trung điểm của BM và MC.CMR: DI + EK = AMd) Gọi N là giao điểm của AM và BE. Chứng minh: AF = 3MNBài 2:...
Đọc tiếp

Câu 1: (3,5 điểm). Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC, từ M kẻ MD ⊥ AB tại D và ME ⊥ AC tại E (D ∈ AB, E ∈ AC)

a) Chứng minh: Tứ giác ADME là hình chữ nhật.

b) Gọi F là điểm đối xưng của điểm M qua điểm E.

Chứng minh: tứ giác AMCF là hình thoi.

c) Gọi I, K lần lượt là trung điểm của BM và MC.

CMR: DI + EK = AM

d) Gọi N là giao điểm của AM và BE. Chứng minh: AF = 3MN

Bài 2: (3,5 điểm) Cho ∆ABC nhọn. Gọi M là trung điểm của AB. Đường thẳng qua M và song song với BC cắt AC tại N, đường thẳng qua B và song song với AC cắt đường thẳng MN tại D.

a/ Chứng minh tứ giác BCND là hình bình hành

b/ Vẽ đường cao AH của ∆ABC. Lấy điểm K sao cho N là trung điểm của HK.

CMR: tứ giác AHCK là hình chữ nhật.

c/ Chứng minh tức giác BHND là hình thang cân.

d/ Đường thẳng qua N và song song với HM cắt đường thẳng DK tại E. Chứng minh DE = 2EK

 

 

 

                                                         

 

 

 

1
7 tháng 7 2016

Câu c: Ta sẽ cm góc BDN = góc HND ( vì cùng bằng góc AND)

Thật vậy:  BDN  = AND slt

                    HND = AND (dễ cm tam giác ANH cân tại N, AH dễ cm là đường cao, nên đồng thời là phân giác)

 Þtứ giác BHND là hình thang cân

Câu d: Gọi I là giao điểm của HM và DK

Xét tứ giác ADBN có

BD = AN  (=HN vì BHND là hình thang cânÞ BD = HN, AHCK là hcn ÞAN = HN)

suy ra  Tứ giác ADBN là hbh ÞM là trung điểm của DN suy ra MD = MN

Xét tam giác EDN có MI song song EN, MD = MN (cmt)suy ra  MI là đường trung bình hay ID = IE (1)

Tương tự xét tam giác KIH có NE là đường trung bình hay EK = IE (2)

Từ (1) và (2) suy ra  ID = IE = EK. Vậy DE = 2EK

14 tháng 12 2015

ai cho 2 cái li-ke cho tròn 90 đi

 

27 tháng 12 2019

bài này mình chưa học nhưng nó tương tự như bài này dưới đây mình đã học

Xét tam giác ABC:

Ta có: EB = EA, FA = FC (gt)

Nên EF // BC, EF = 1/2  BC.

Xét tam giác BDC có: HB = HD, GD = GC (gt)

Nên HG // BC, HG =  1/2  BC.

Do đó EF //HG, EF = HG.

Tương tự EH // FG, EH = FG

Vậy EFGH là hình bình hành.

a) EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC

b) EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC

c)  EFGH là hình vuông ⇔ AD ⊥ BC và AD = BC