K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có 

\(17^5\equiv7\left(mod10\right)\)

\(24^4\equiv6\left(mod10\right)\)

\(13\equiv3\left(mod10\right)\)

\(13^5\equiv3\left(mod10\right)\)

\(13^{20}\equiv\left(13^5\right)^4\equiv3^4\equiv1\left(mod10\right)\)

\(\Rightarrow13^{21}\equiv13^{20}.13\equiv1.3\equiv3\left(mod10\right)\)

\(\Leftrightarrow17^5+24^4+13^{21}\equiv7+6+3\equiv16\left(mod10\right)\)

=> C không chia hết cho 10 

6 tháng 1 2020

\(8^{102}-2^{102}=\left(8^{51}-2^{51}\right)\left(8^{51}+2^{51}\right)\equiv\left(8^{51}-2^{51}\right).\left(8+2\right)\equiv\left(8^{51}-2^{51}\right).10\equiv0\left(mod10\right)\)

6 tháng 1 2020

Ta có : 8102=82.(84)25=64.\(\left(\overline{...6}\right)\)=\(\overline{...4}\)

            2102=22.(24)25=4.\(\left(\overline{...6}\right)\)=\(\overline{...4}\)

\(\Rightarrow8^{102}-2^{102}=\left(\overline{...4}\right)-\left(\overline{...4}\right)=\overline{...0}⋮10\)

Vậy 8102-2102\(⋮\)10.

25 tháng 3 2017

Muốn chia hết cho 10 thì tận cùng phải bằng 0

Ta có

5+4-1=0

=> 175+244-1321 chia hết cho 10

3 tháng 10 2017

a) bạn ghi sai đề

b) Ta có\(10\equiv1\left(mod3\right)\)

\(\Rightarrow10^{100}\equiv1\left(mod3\right)\)

\(\Rightarrow10^{100}+14\equiv15\left(mod3\right)\)

\(15\equiv0\left(mod3\right)\)

\(\Rightarrow10^{100}+14\equiv0\left(mod3\right)\)

\(\Rightarrow10^{100}+14⋮3\)

24 tháng 1 2018

bài này vượt quá giới hạn của ta rồi

24 tháng 1 2018

Câu 1 cách làm:

Cậu có thể đưa ra chữ số tận cùng của mỗi lũy thừa, ví dụ như thế này để tính

2^(4k+1) có tận cùng là 2 nên 2^2009 có tận cùng là 2(2009=4.502+1)

31 tháng 7 2018

a chia 6 dư 1 => a = 6k + 1

b chia 6 dư 2 => b = 6k + 2

c chia 6 dư 3 => c = 6k + 3

suy ra:  a + b + c = 6k+1 + 6k+2 + 6k+3  

                            = 18k + 6 

                            = 6(3k + 1)  chia hết cho 6

5 tháng 7 2016

a) thấy 60 chia hết cho 15 => 60n chia hết cho 15

           45 chia hết cho 15 nhưng không chi hết cho 30

=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30

b) ta có 3 số nguyên liên tiếp là a,a+1,a+2

tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3

d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)

=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5

5 tháng 7 2016

các bn ơi giúp mik đi mik cần gấp lắm