Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8^{102}-2^{102}=\left(8^{51}-2^{51}\right)\left(8^{51}+2^{51}\right)\equiv\left(8^{51}-2^{51}\right).\left(8+2\right)\equiv\left(8^{51}-2^{51}\right).10\equiv0\left(mod10\right)\)
Ta có : 8102=82.(84)25=64.\(\left(\overline{...6}\right)\)=\(\overline{...4}\)
2102=22.(24)25=4.\(\left(\overline{...6}\right)\)=\(\overline{...4}\)
\(\Rightarrow8^{102}-2^{102}=\left(\overline{...4}\right)-\left(\overline{...4}\right)=\overline{...0}⋮10\)
Vậy 8102-2102\(⋮\)10.
Muốn chia hết cho 10 thì tận cùng phải bằng 0
Ta có
5+4-1=0
=> 175+244-1321 chia hết cho 10
a) bạn ghi sai đề
b) Ta có\(10\equiv1\left(mod3\right)\)
\(\Rightarrow10^{100}\equiv1\left(mod3\right)\)
\(\Rightarrow10^{100}+14\equiv15\left(mod3\right)\)
Mà\(15\equiv0\left(mod3\right)\)
\(\Rightarrow10^{100}+14\equiv0\left(mod3\right)\)
\(\Rightarrow10^{100}+14⋮3\)
Câu 1 cách làm:
Cậu có thể đưa ra chữ số tận cùng của mỗi lũy thừa, ví dụ như thế này để tính
2^(4k+1) có tận cùng là 2 nên 2^2009 có tận cùng là 2(2009=4.502+1)
a) thấy 60 chia hết cho 15 => 60n chia hết cho 15
45 chia hết cho 15 nhưng không chi hết cho 30
=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30
b) ta có 3 số nguyên liên tiếp là a,a+1,a+2
tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3
d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)
=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5
Ta có
\(17^5\equiv7\left(mod10\right)\)
\(24^4\equiv6\left(mod10\right)\)
\(13\equiv3\left(mod10\right)\)
\(13^5\equiv3\left(mod10\right)\)
\(13^{20}\equiv\left(13^5\right)^4\equiv3^4\equiv1\left(mod10\right)\)
\(\Rightarrow13^{21}\equiv13^{20}.13\equiv1.3\equiv3\left(mod10\right)\)
\(\Leftrightarrow17^5+24^4+13^{21}\equiv7+6+3\equiv16\left(mod10\right)\)
=> C không chia hết cho 10