Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{15n+8}{3n+4}=\frac{5\left(3n+4\right)-12}{3n+4}=5-\frac{12}{3n+3}\)
Để phân số trên có giái trị nhỏ nhất => \(\frac{12}{3n+4}\) lớn nhất
=> 3n+4 nhỏ nhất
xét : 3n+4 là số nguyên âm mà không có số nguyên âm nhỏ nhất => loại
xét : 3n+4 là số nguyên dương
=> 3n+4 = 1
=> 3n=-3
=> n= -1
Vậy để phân số trên có giái trị nhỏ nhất thì n = -1
a) \(\text{Để A có giá trị nguyên thì }\) \(6n-1⋮5n+2\)
\(\Rightarrow30n-5⋮5n+2\)
\(\Rightarrow6.\left(5n+2\right)-10⋮5n+2\)
mà \(6.\left(5n+2\right)⋮5n+2\)
\(\Rightarrow10⋮5n+2\)\(\Rightarrow5n+2\inƯ\left(10\right)\)
\(\Rightarrow5n+2\in\orbr{1;2;5;10;-1;-2;-5;-10]}\)
\(\Rightarrow5n\in[-1;0;3;8;-3;-4;-7;-15]\)mà \(n\in Z\)
\(\Rightarrow n\in[0;-3]\)
Để C có GTNN thì \(\dfrac{-1}{5n-1}\) đạt GTNN
⇒\(\dfrac{-1}{5n-1}\le-1\)
\(\Rightarrow n=4\)
Vậy GTNN của C=-1
\(\dfrac{15n-2}{5n-1}=\dfrac{15n-3+1}{5n-1}=3+\dfrac{1}{5n-1}\)
Dấu '=' xảy ra khi n=4