Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
=1-1/1024
=1023/1024
C = 1 + 2 + 4 + 8 + ... + 512 + 1024
2C = 2 + 4 + 8 + 16 + ... + 1024 + 2048
2C - C = (2 + 4 + 8 + 16 + ... + 1024 + 2048) - (1 + 2 + 4 + 8 + ... + 512 + 1024)
C = 2048 - 1
C = 2047
Ta có :
\(S=1-\frac{1}{2}+\frac{1}{4}-...+\frac{1}{1024}\)
\(S=1-\frac{1}{2}+\frac{1}{2^2}-...+\frac{1}{2^{10}}\)
\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-...+\frac{1}{2^{11}}\)
\(S+\frac{1}{2}S=\left(1-\frac{1}{2}+\frac{1}{2^2}-...+\frac{1}{2^{10}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-...+\frac{1}{2^{11}}\right)\)
\(\frac{3}{2}S=1-\frac{1}{2^{11}}\)
\(S=\frac{1-\frac{1}{2^{11}}}{\frac{3}{2}}\)
\(S=\frac{2-\frac{1}{2^{10}}}{3}\)
\(S=\frac{\frac{2^{11}-1}{2^{10}}}{3}\)
Vậy \(S=\frac{\frac{2^{11}-1}{2^{10}}}{3}\)
Chúc bạn học tốt ~
Ta có:
2S = 2.(1-1/2+1/4-1/8+1/16-...+1/1024)
2S = 2/2-1+1/2-1/4+1/8-...+1/512
2S+S = ( 2/2-1+1/2-1/4+1/8-...+1/512)+(1-1/2+1/4-1/8+1/16-...+1/1024)
3S = 2 + 1/1024
3S = 2048/1024+1/1024
3S = 2049/1024
S = 2049/1024 : 3
S = 2049/1024.1/3
S = 683/1024
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{512}-\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^9}-\frac{1}{2^{10}}\)
\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^8}-\frac{1}{2^9}\)
\(3A=1-\frac{1}{2^{10}}< 1\)
\(\Rightarrow A< \frac{1}{3}\)
gọi A=1/2+1/4+1/8+...+1/1024
2xA=1+1/2+1/4+.....+1/512
2xA-A=(1+1/2+1/4+....+1/512)-(1/2+1/4+1/8+...+1/1024)
A=1-1/1024
=1023/1024
vậy A=1023/1024