Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}+\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}\)
\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)^2}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}+\frac{\left(\sqrt{6}+\sqrt{5}\right)^2}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)
\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)^2+\left(\sqrt{6}+\sqrt{5}\right)^2}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)
\(=\frac{11-2\sqrt{30}+11+2\sqrt{30}}{\left(\sqrt{6}\right)^2-\left(\sqrt{5}\right)^2}\)
\(=\frac{22}{1}=22\)
\(\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}+\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}\)
\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)+\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)
\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)^2+\left(\sqrt{6}+\sqrt{5}\right)^2}{\sqrt{6}^2+\sqrt{5}^2}\)
\(=\sqrt{6}^2-2\sqrt{6}.\sqrt{5}+\sqrt{5}^2+\sqrt{6}^2+2\sqrt{6}.\sqrt{5}+\sqrt{5}^2\)
\(=6+5+6+5=22\)
a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)
\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(2-5\right)\)
\(=-\left(-3\right)\)
\(=3\)
b) Ta có:
\(x^2-x\sqrt{3}+1\)
\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)
Dấu "=" xảy ra:
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)
Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)
a)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của khanhhuyen6a5 - Toán lớp 9 | Học trực tuyến
bạn đặt A=biểu thức rồi tính \(\frac{1}{\sqrt{2}}A\) là ra
\(M=\frac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{2+\sqrt{6+2\sqrt{5}}}+\frac{2-\sqrt{5}}{2-\sqrt{6-2\sqrt{5}}}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{2+\sqrt{5}+1}+\frac{2-\sqrt{5}}{2-\sqrt{5}-1}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{3+\sqrt{5}}+\frac{2-\sqrt{5}}{1-\sqrt{5}}\)
P/s làm tiếp nha , hình như bạn ghi đề sai dấu
\(\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}+\frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}+\sqrt{5}}\)
\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\left(\sqrt{3}-\sqrt{5}\right)^2}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}=\frac{3+2\sqrt{15}+5+3-2\sqrt{15}+5}{3-5}\)
\(=\frac{3+5+3+5}{-2}=\frac{16}{-2}=-8\)
Lời giải:
\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}=\frac{(5+\sqrt{5})^2+(5-\sqrt{5})^2}{(5-\sqrt{5})(5+\sqrt{5})}\)
\(=\frac{30+10\sqrt{5}+30-10\sqrt{5}}{25-5}=\frac{60}{20}=3\)