Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(x^2-5\right)\left(x^2-24\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x^2-5>0\\x^2-24< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2-5< 0\\x^2-24>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2>5\\x^2< 24\end{cases}}\)hoặc \(\hept{\begin{cases}x^2< 5\\x^2>24\end{cases}}\) ( vô lí)
\(\Leftrightarrow5< x^2< 24\)
Mà x nguyên <=> \(x^2\in\left\{9;16\right\}\)
\(\Leftrightarrow x\in\left\{-3;-4;3;4\right\}\)
Vậy \(x\in\left\{-3;-4;3;4\right\}\)
K chắc trình bày
@@ Học tốt
a)\(\left|x-2\right|+\left|-17\right|=\left|-24\right|\)
\(\left|x-2\right|+17=24\)
\(\Rightarrow\left|x-2\right|=7\)
\(\Rightarrow x-2=\hept{\begin{cases}7\\-7\end{cases}}\)
\(\Rightarrow x=\hept{\begin{cases}9\\-5\end{cases}}\)
\(b,\left|x\right|=x\)
Vậy \(x\in N\)
\(c,\left|x\right|+\left|y\right|+\left|z\right|=0\)
Mà \(\left|x\right|+\left|y\right|+\left|z\right|\ge0\)
\(\Rightarrow x=0;y=0;z=0\)
\(a)\)\(\left|x-2\right|+\left|-17\right|=\left|-24\right|\)
\(\Leftrightarrow\left|x-2\right|+17=24\)
\(\Leftrightarrow\left|x-2\right|=24-17\)
\(\Leftrightarrow\left|x-2\right|=7\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=7\\x-2=-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=-5\end{cases}}\)
Vậy\(x\in\left\{9;-5\right\}\)
\(b)\)\(\left|x\right|=x\)
\(\Leftrightarrow x\ge0\)
Vậy\(x\ge0\)
\(c)\) Ta thấy: \(\left|x\right|\ge0\)
\(\left|y\right|\ge0\) \(\left(\forall x;y;z\right)\)
\(\left|z\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=0\\\left|z\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
Vậy \(x=y=z=0\)
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
a) 2.(x+4)+5=65
2.(x+4)=65-5
2.(x+4)=60
x+4=60:2
x+4=30
x=30-4=26
c) x ∈ Z và x 2 - 5 x 2 - 24 < 0
Ta có: x 2 - 5 > 0 ; x 2 - 24 < 0 ⇒ x 2 > 5 ; x 2 < 24 Nên x 2 ∈ 9 ; 16
x 2 = 9 ⇒ x = ± 3 ; x = 16 ⇒ x = ± 4
Vậy x ∈ - 3 ; 3 ; - 4 ; 4