Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -7/25 . 11/13 + -7/25 . 2/13 - 18/25=-1
b) 5/7 . 1/3 - 5/7 . 1/4 - 5/7 . 1/12=0
c) 5 + 2/5 . 4+ 2/7 + 5 + 5/7 . 5+ 2/5=18
d) 75% - 3/2 + 0,5 - [ -1/2]^2=-1/2
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90
2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100
2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - ( 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 )
A = 2^100 - 2^3
B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50
5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51
5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )
4B = 5^51 - 1
B = 5^51 - 1 / 4
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222q22222222222222222222222222222222222222222222222222222222222222222222222222222222222222
a) \(\left\{\left(\dfrac{3}{5}\right)^2-\left(\dfrac{2}{5}\right)^2\right\}x=\left(\dfrac{1}{5}\right)^3\)
\(\left(\dfrac{9}{25}-\dfrac{4}{25}\right)x=\dfrac{1}{125}\)
\(\dfrac{1}{5}x=\dfrac{1}{125}\)
\(x=\dfrac{1}{25}\)
b) Ý này đề bài rõ hơn đi ạ
c)\(\left(3x-2^2\right)=9\)
\(3x-4=9\)
\(3x=13\)
\(x=\dfrac{13}{3}\)
d)\(\left(x+\dfrac{1}{3}\right)-4=-1\)
\(x+\dfrac{1}{3}=3\)
\(x=\dfrac{8}{3}\)
a, \(\left[\left(\dfrac{3}{2}\right)^2-\left(\dfrac{2}{5}\right)^2\right]x=\left(\dfrac{1}{5}\right)^3\)
\(\Leftrightarrow\left(\dfrac{9}{4}-\dfrac{4}{10}\right)x=\dfrac{1}{125}\)
\(\Leftrightarrow\dfrac{1}{5}x=\dfrac{1}{125}\)
\(\Leftrightarrow x=\dfrac{1}{125}.5=\dfrac{1}{25}\)
b, Ghi lại đề
c, \(\left(3x-2^2\right)=9\)
\(\Leftrightarrow3x-4=9\)
\(\Leftrightarrow x=\dfrac{9+4}{3}=\dfrac{13}{3}\)
d, \(\left(x+\dfrac{1}{3}\right)-4=-1\)
\(\Leftrightarrow x=-1+4-\dfrac{1}{3}=3-\dfrac{1}{3}=\dfrac{8}{3}\)
a) \(\left(3x-1\right).\left(\frac{-1}{2}x+5\right)=0\)
\(\Rightarrow3x-1=0\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\)
\(\frac{-1}{2}x+5=0\Rightarrow\frac{-1}{2}x=-5\Rightarrow x=10\)
b) \(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=x+\frac{1}{5}\)
\(3x-\frac{3}{2}-5x-3=x+\frac{1}{5}\)
\(\Rightarrow3x-5x-x=\frac{1}{5}+\frac{3}{2}+3\)
\(-3x=\frac{47}{10}\)
\(x=\frac{-47}{30}\)
c) \(-5.\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-1-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-\frac{1}{2}x-\frac{3}{2}x=\frac{-5}{6}+1-\frac{1}{3}\)
\(-7x=\frac{-1}{6}\)
\(x=\frac{1}{42}\)
d) \(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(3.\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\)
\(\left(3x-\frac{1}{2}\right)^3=\frac{-1}{27}\)
\(\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Rightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(3x=\frac{1}{6}\)
\(x=\frac{1}{18}\)
Học tốt nhé bn!
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
Bài 1: Tìm \(x\)
a; \(x-2\) + 7 = 1.3.(-9)
\(x\) - 2 + 7 = 3.(-9)
\(x\) - 2 + 7 = - 27
\(x\) = - 27 - 7 + 2
\(x\) = - 34 + 2
\(x\) = - 32
Vậy \(x=-32\)
Bài 1
c; - 2\(x\) + 5 = 7
- 2\(x\) = 7 - 5
- 2\(x\) = - 2
\(x\) = -2 : (-2)
\(x\) = - 1
Vậy \(x\) = - 1
a) \(\frac{-2}{3}x+\frac{1}{5}=\frac{1}{10}\)
\(\Leftrightarrow\frac{-2}{3}x=\frac{1}{10}-\frac{1}{5}\)
\(\Leftrightarrow\frac{-2}{3}x=\frac{-1}{10}\)
\(\Leftrightarrow x=\frac{-1}{10}\div\frac{-2}{3}\)
\(\Leftrightarrow x=\frac{3}{20}\)
\(C=5+5^3+5^5+...+5^{101}\)
\(5^2\cdot C=5^2\cdot\left(5+5^3+...+5^{101}\right)\)
\(25C=5^3+5^5+...+5^{103}\)
\(25C-C=\left(5^3+5^5+....+5^{103}\right)-\left(5+5^3+5^5+...+5^{101}\right)\)
\(24C=\left(5^3-5^3\right)+\left(5^5-5^5\right)+...+\left(5^{103}-5\right)\)
\(24C=5^{103}-5\)
\(C=\dfrac{5^{103}-5}{24}\)
_____________
\(D=2^{100}-2^{99}+2^{98}-...+2^2-2+1\)
\(2D=2\cdot\left(2^{100}-2^{99}+2^{98}-...-2+1\right)\)
\(2D=2^{101}-2^{100}+2^{99}-...-2^2+2\)
\(2D+D=2^{101}-2^{100}+...-2^2+2+2^{100}-2^{99}+...-2+1\)
\(D=2^{101}+1\)
wow gioir thaatj