K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

27 tháng 4 2022

 

a)

Xét tam giác BAC vuông tại A và tam giác BMN vuông tại M có:

\(\widehat{BAC}\)=\(\widehat{BMN}\)

=> Tam giác BAC ᔕ  Tam giác BMN (g-g)

=> BA/BM=BC/BN

=> BN=BM.\(\dfrac{BC}{BA}\)=18.\(\dfrac{20}{12}\)=30cm

b)

Xét tam giác PAN vuông tại A và tam giác PMC vuông tại M có

\(\widehat{APN}\)=\(\widehat{MPC}\) (đối đỉnh)

=> Tam giác PAN ᔕ Tam giác PMC (g-g)

=> \(\dfrac{PA}{PM}\)=\(\dfrac{PN}{PC}\)

=> PA.PC=PM.PN (đpcm)

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

b: ADME là hình chữ nhật

=>AM cắt DE tại trung điểm của mỗi đường

mà I là trung điểm của DE

nên I là trung điểm của AM

=>A,I,M thẳng hàng

c: Xét ΔBMP có

BD vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔBMP cân tại B

=>BA là phân giác của góc MBP

Xét ΔAMP có

AD là đường cao, là đường trung tuyến

Do đó: ΔAMP cân tại A

=>AB là phân giác của góc MAP(1)

Xét ΔAMQ có

AC vừa là đường cao, vừa là đường trung tuyến

Do đó; ΔAMQ cân tại A

=>AC là phân giác của góc MAQ(2)

Từ (1), (2) suy ra góc PAQ=2*góc BAC=180 độ

=>P,A,Q thẳng hàng

Xét ΔAMB và ΔAPB có

AM=AP

AB chung

BM=BP

Do đó: ΔAMB=ΔAPB

=>góc AMB=góc APB

Xét ΔAMC và ΔAQC có

AM=AQ

góc MAC=góc QAC

AC chung

Do đó: ΔAMC=ΔAQC

=>góc AMC=góc AQC

=>góc AQC+góc AMB=180 độ

mà góc AMB=góc APB

nên góc AQC+góc APB=180 độ

=>BP//QC

=>BPQC là hình thang

d: AM=AP

AM=AQ

Do đó: AP=AQ

mà P,A,Q thẳng hàng

nên A là trung điểm của PQ

19 tháng 12 2022

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

b: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó E là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

=>ME//BD và ME=BD

=>MEDB là hình bình hành

=>MD cắtEB tại trung điểm của mỗi đường

=>B,K,E thẳng hàng