K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2021

\(a,\Rightarrow\left[{}\begin{matrix}x-1=2x\\1-x=2x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Rightarrow\left[{}\begin{matrix}x+x-2=2\left(x\ge2\right)\\x+2-x=2\left(0\le x< 2\right)\\-x+2-x=2\left(x< 0\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\left(x\ge2\right)\left(tm\right)\\x=0\left(0\le x< 2\right)\left(tm\right)\\x=0\left(x< 0\right)\left(ktm\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

a: Ta có: \(\left|x-1\right|=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=2x\left(x\ge1\right)\\x-1=-2x\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)

6 tháng 5 2022

a) choA(x) = 0

\(=>-18+2x=0\)

\(=>2x=18=>x=9\)

b) cho B(x) = 0

\(=>\left(x+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

6 tháng 5 2022

a)

Cho A(X) = 0

 -18+2x =0

2x = 18

x = 9

Vậy nghiệm của đa thức A(x) là9

 

b)

CHo B(x) = 0

(x+1)(x-2) =0

TH1)

x+1= 0

x = -1

TH2)

x-2 =0

x = 2

Vậy nghiệm của đa thức B(x) = -1 hoặc 2

D
datcoder
CTVVIP
11 tháng 10 2023

a) \(6x^2-2x=2x\left(3x-1\right)\)

\(2x\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}2x=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{0;\dfrac{1}{3}\right\}\)

b) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+3\right)\left(x+2\right)\)

\(\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)

Vậy \(S=\left\{-3;-2\right\}\)

9 tháng 4 2021

a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3

Nghiệm của đa thức là x = 3

b)1. P(1) = \(1^4+2.1^2+1\) = 4

P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)

Ta có: P(x) = \(\left(x^2+1\right)^2\)

Vì \(\left(x^2+1\right)^2\) ≥ 0 

Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)

Vậy P(x) không có nghiệm

a) Đặt A(x)=0

\(\Leftrightarrow6-2x=0\)

\(\Leftrightarrow2x=6\)

hay x=3

Vậy: x=3 là nghiệm của đa thức A(x)

14 tháng 11 2023

a: \(\left|7-2x\right|+7=2x\)

=>\(\left|2x-7\right|+7=2x\)

=>\(\left|2x-7\right|=2x-7\)

=>2x-7>=0

=>\(x>=\dfrac{7}{2}\)

b: \(\left|1-x\right|=4x+1\)

=>\(\left|x-1\right|=4x+1\)

=>\(\left\{{}\begin{matrix}4x+1>=0\\\left(4x+1\right)^2=\left(x-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(4x+1\right)^2-\left(x-1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(4x+1-x+1\right)\left(4x+1+x-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\5x\left(3x+2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

c: \(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|3,2+\dfrac{2}{5}\right|\)

=>\(\left|x-\dfrac{1}{3}\right|=\dfrac{16}{5}+\dfrac{2}{5}-\dfrac{4}{5}=\dfrac{14}{5}\)

=>\(\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{14}{5}\\x-\dfrac{1}{3}=-\dfrac{14}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}+\dfrac{1}{3}=\dfrac{42+5}{15}=\dfrac{47}{15}\\x=-\dfrac{14}{5}+\dfrac{1}{3}=\dfrac{-42+5}{15}=-\dfrac{37}{15}\end{matrix}\right.\)

d: \(\left|x-7\right|+2x+5=6\)

=>\(\left|x-7\right|=6-2x-5=-2x+1\)

=>\(\left\{{}\begin{matrix}-2x+1>=0\\\left(-2x+1\right)^2=\left(x-7\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(2x-1\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(2x-1+x-7\right)\left(2x-1-x+7\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(3x-8\right)\left(x+6\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{8}{3}\left(loại\right)\\x=-6\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)

e: 3x-|2x-1|=2

=>|2x-1|=3x-2

=>\(\left\{{}\begin{matrix}3x-2>=0\\\left(3x-2\right)^2=\left(2x-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(3x-2\right)^2-\left(2x-1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(3x-2-2x+1\right)\left(3x-2+2x-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(x-1\right)\left(5x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left[{}\begin{matrix}x-1=0\\5x-3=0\end{matrix}\right.\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left[{}\begin{matrix}x=1\left(nhận\right)\\x=\dfrac{3}{5}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

7 tháng 5 2021

a,P(x)=x3+4x2-2x-3

b,Q=2x2y-x2y+xy-xy+1

<=>x2y+1

 

18 tháng 8 2017

a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)

b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)

c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)

\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)

e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)

\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1

18 tháng 8 2017

Bài 2:

a)\(P=9-2\left|x-3\right|\)

Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)

\(\Rightarrow-2\left|x-3\right|\le0\)

\(\Rightarrow9-2\left|x-3\right|\le9\)

Khi x=3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(Q=\left|x-2\right|+\left|x-8\right|\)

\(=\left|x-2\right|+\left|8-x\right|\)

\(\ge\left|x-2+8-x\right|=6\)

Khi \(2\le x\le8\)