Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x = - 2\); \(y = \dfrac{1}{3}\) vào đa thức \(A\) ta có:
\(\begin{array}{l}A = 5.{\left( { - 2} \right)^2} - 4.\left( { - 2} \right).\dfrac{1}{3} + 2.\left( { - 2} \right) - 4.{\left( { - 2} \right)^2} + \left( { - 2} \right).\dfrac{1}{3}\\A = 5.4 - \dfrac{{ - 8}}{3} + \left( { - 4} \right) - 4.4 + \dfrac{{ - 2}}{3}\\A = 20 + \dfrac{8}{3} - 4 - 16 + \dfrac{{ - 2}}{3}\\A = 2\end{array}\)
Thay \(x = - 2\); \(y = \dfrac{1}{3}\) vào đa thức \(B\) ta có:
\(\begin{array}{l}B = {\left( { - 2} \right)^2} - 3.\left( { - 2} \right).\dfrac{1}{3} + 2.\left( { - 2} \right)\\B = 4 - \left( { - 2} \right) + \left( { - 4} \right)\\B = 4 + 2 - 4\\B = 2\end{array}\)
Vậy \(A = B\)
Bài tập `17`
`a,` ` @` Tớ nghĩ là tính tích ba đơn thức chứ nhỉ ?
\(-\dfrac{3}{8}x^2z.\dfrac{2}{3}xy^2z^2.\dfrac{4}{5}x^3y\\ =\left(-\dfrac{3}{8}.\dfrac{2}{3}.\dfrac{4}{5}\right)\left(x^2.x.x^3\right)\left(y^2.y\right)\left(z.z^2\right)\\ =-\dfrac{1}{5}x^6y^3z^3\)
`b,` Tại `x=-1 ; y=-2;z=-3`
Thì \(-\dfrac{3}{8}x^2z=-\dfrac{3}{8}.\left(-1\right)^2.\left(-3\right)=-\dfrac{3}{8}.1.\left(-3\right)=\dfrac{9}{8}\\ \dfrac{2}{3}xy^2z^2=\dfrac{2}{3}.\left(-1\right)\left(-2\right)^2\left(-3\right)^2=\dfrac{2}{3}.\left(-1\right).4.9=-24\\ \dfrac{4}{5}x^3y=\dfrac{4}{5}.\left(-1\right)^3.\left(-2\right)=\dfrac{4}{5}.\left(-1\right).\left(-2\right)=\dfrac{8}{5}\)
Bài 3:
\(C=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)
\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{-\left(x^2-3x+9\right)}\)
\(=\dfrac{-3}{x-3}\)
a: A=-3/8x^2z*2/3xy^2z^2*4/5x^3y=-1/5x^6y^3z^3
b: Khi x=-1;y=-2;z=-3 thì -3/8x^2z=-3/8*(-1)^2*(-3)=9/8
2/3xy^2z^2=2/3*(-1)*(2*3)^2=-2/3*36=-24
4/5x^3y=4/5*(-1)^3*(-3)=12/5
A=-1/5*(-1)^6*(-2)^3*(-3)^3=-216/5
a: M=2(-2x-3xy^2+1)-3xy^2+1
=-4x-6xy^2+2-3xy^2+1
=-4x-9xy^2+3
b: Thay x=-2 và y=3 vào M, ta được:
M=2*(-2)-3*(-2)*3^2+1
=-4+1+6*9
=54-3
=51
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
Bài 2:
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)
Bài 3:
\(M=x^6-x^4-x^4+x^2+x^3-x\)
\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)
\(=8x^3-8x+8\)
\(=8\cdot8+8=72\)
a) B(-1) = 2.(- 1)2 - (- 1) + 1 = 4
b) Thực hiện phép chia ta có:
\(2x^3+5x^2-2x+a=\left(x+3\right)+\frac{a-3}{2x^2-x+1}\)
Vậy nên để đa thức A chia hết cho đa thức B thì a - 3 = 0 hay a = 3.
c) Để B = 1 thì \(2x^2-x+1=1\Leftrightarrow2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
\(a,A+B=x^2-3xy-y^2+1+2x^2+y^2-7xy-5\)
\(=x^2+2x^2+\left(-3xy-7xy\right)-y^2+y^2+1-5\)
\(=3x^2-10xy-4\)
\(b,C+A-B=0\Rightarrow C=B-A\)
\(=\left(2x^2+y^2-7xy-5\right)-\left(x^2-3xy-y^2+1\right)\)
\(=2x^2+y^2-7xy-5-x^2+3xy+y^2-1\)
\(=x^2+2y^2-4xy-6\)
\(c,x=2;y=-\dfrac{1}{2}\Rightarrow C=2^2+2\left(-\dfrac{1}{2}\right)^2-4.2.\left(-\dfrac{1}{2}\right)-6\)
\(\Rightarrow C=\dfrac{5}{2}\)