Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
\(\left(x^3+ax^2+2x+b\right)=\left(x^2+x+1\right)\left(cx+d\right).\)
\(x^3+ax^2+2x+b=cx^3+x^2\left(c+d\right)+x\left(c+d\right)+d\)
Đồng nhất 2 vế có
\(x^3=cx^3\Rightarrow c=1\)
\(2x=x\left(c+d\right)\Leftrightarrow2x=x\left(1+d\right)\Rightarrow d=1\)
\(ax^2=x^2\left(c+d\right)\Rightarrow a=2\)
\(b=d\Rightarrow b=1\)
2/ Câu B tương tự nha bạn
MK làm theo phương pháp hệ số bất định
a, Vì số bị chia có bậc 3 mà số chia có bậc 2 nên thương sẽ có bậc 1
Hệ số của thương là : x3:x2=x
Gọi đa thức thương là : x + c
\(x^3+ax^2+2x+b=\left(x^2+x+1\right).\left(x+c\right)\)
\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2c+x^2+cx+x+c\)
\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2\left(c+1\right)+x\left(c+1\right)+c\)
Theo pp hệ số bất định
\(\Rightarrow\hept{\begin{cases}a=c+1\\2=c+1\\b=c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\c=2-1=1\\b=c=1\end{cases}}\)
Vậy a = 2 ; b = 1
Câu b tương tự nhé
x -2x 2 3 +3x +50 x+3 x -x 3 2 -3x 2 -5x 2 -5x +3x 5x +15x 2 +50 18x +50 +18 -18x -54 -4
\(\frac{x^3-2x^2+3x+50}{x+3}=\left(x^2-5x+18\right)\left(x+3\right)-4=\left(x^2-5x+18\right)+\frac{-4}{x+3}\)
Đề \(\left(x^3-2x^2+3x+50\right)\)chia hết cho \(\left(x+3\right)\)thì \(-4\)chia hết \(\left(x+3\right)\)
mà \(x+3\)là ước của -4.
\(\Rightarrow x+3=-1;1;-2;2-4;4\)
\(\cdot x+3=-1\Rightarrow x=-4\)(nhận)
\(\cdot x+3=1\Rightarrow x=2\)(nhận)
\(\cdot x+3=-2\Rightarrow x=-5\)(nhận)
\(\cdot x+3=2\Rightarrow x=-1\)(nhận)
\(\cdot x+3=-4\Rightarrow x=-7\)(nhận)
\(\cdot x+3=4\Rightarrow x=1\)(nhận)
Vậy \(x=-7;-5;-4;-1;1;2\)thì \(\left(x^3-2x^2+3x+50\right)\)chia hết cho \(\left(x+3\right)\)
a) B(-1) = 2.(- 1)2 - (- 1) + 1 = 4
b) Thực hiện phép chia ta có:
\(2x^3+5x^2-2x+a=\left(x+3\right)+\frac{a-3}{2x^2-x+1}\)
Vậy nên để đa thức A chia hết cho đa thức B thì a - 3 = 0 hay a = 3.
c) Để B = 1 thì \(2x^2-x+1=1\Leftrightarrow2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)