Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}+1=\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}+1\)
\(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
\(\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\\ x+2018=0\\ x=-2018\)
\(\dfrac{x+4}{2015}+\dfrac{x+3}{2016}=\dfrac{x+2}{2017}+\dfrac{x+1}{2018}\)
\(\Leftrightarrow\left(\dfrac{x+4}{2015}+1\right)+\left(\dfrac{x+3}{2016}+1\right)=\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+1}{2018}+1\right)\)
\(\Leftrightarrow\dfrac{x+2019}{2015}+\dfrac{x+2019}{2016}=\dfrac{x+2019}{2017}+\dfrac{x+2019}{2018}\)
\(\Leftrightarrow\dfrac{x+2019}{2015}+\dfrac{x+2019}{2016}-\dfrac{x+2019}{2017}-\dfrac{x+2019}{2018}=0\)
\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)
Mà \(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\ne0\)
\(\Leftrightarrow x+2019=0\)
\(\Leftrightarrow x=-2019\)
Vậy...
\(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)
\(=\left(\dfrac{2016}{2}+1\right)+\left(\dfrac{2015}{3}+1\right)+...+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{1}{2017}+1\right)+1\)
\(=\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\)
\(=2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)
Theo đề, ta có: \(x=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}}=2018\)
\(=>\left(\dfrac{x+4}{2014}+1\right)+\left(\dfrac{x+3}{2015}+1\right)=\left(\dfrac{x+2}{2016}+1\right)+\left(\dfrac{x+1}{2017}+1\right)\)
=> \(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
=> (x+2018).\(\left(\dfrac{1}{2014}+\dfrac{1}{2015}\right)=\left(x+2018\right).\left(\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
=> (x+2018).\(\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\) = 0
Mà \(\dfrac{1}{2014}>0;\dfrac{1}{2015}>0;\dfrac{1}{2016}>0;\dfrac{1}{2017}>0\)
=>\(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\ne0\)
=> \(x+2018=0\)
=>x = 0-2018
=> x = 0+(-2018)
=> x = -2018
\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}-\dfrac{x-3}{2014}=\dfrac{x-4}{2013}\)
\(\Leftrightarrow\dfrac{x-1}{2016}+\dfrac{x-2}{2015}=\dfrac{x-4}{2013}+\dfrac{x-3}{2014}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)=\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-3}{2014}-1\right)\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}=\dfrac{x-2017}{2013}+\dfrac{x-2017}{2014}\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}-\dfrac{x-2017}{2013}-\dfrac{x-2017}{2014}=0\)
\(\Leftrightarrow x-2017.\left(\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)
\(\text{Mà }\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2103}\ne0\Rightarrow x-2017=0\)
\(\Leftrightarrow x=2017\) \(\text{Vậy }x=2017\)
\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)
\(\Rightarrow\dfrac{x-1}{2017}+\dfrac{x-2}{2016}-\dfrac{x-3}{2015}-\dfrac{x-4}{2014}=0\)
\(\Rightarrow\dfrac{x-1}{2017}-1+\dfrac{x-2}{2016}-1-\dfrac{x-3}{2015}+1-\dfrac{x-4}{2014}+1=0\)
\(\Rightarrow\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)-\left(\dfrac{x-3}{2015}-1\right)-\left(\dfrac{x-4}{2014}-1\right)=0\)
\(\Rightarrow\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)
\(\Rightarrow x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Vì \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)
Để \(x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
\(\Rightarrow x-2018=0\)
\(x=2018\)
Ta có :
\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)
\(\Leftrightarrow\)\(\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)=\left(\dfrac{x-3}{2015}-1\right)+\left(\dfrac{x-4}{2014}-1\right)\) ( trừ 2 vế cho 2 )
\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}=\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}\)
\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)
\(\Leftrightarrow\)\(\left(x-2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Vì \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)
Nên \(x-2018=0\)
\(\Rightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
Sửa đề:\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2015}{2017}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2015}{2017}\)
\(\Leftrightarrow\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2015}{2017}\)
\(\Leftrightarrow1-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+\dfrac{2}{4}-\dfrac{2}{5}+...+\dfrac{2}{x}-\dfrac{2}{x+1}=\dfrac{2015}{2017}\)
\(\Leftrightarrow1-\dfrac{2}{x+1}=\dfrac{2015}{2017}\Leftrightarrow\dfrac{2}{x+1}=1-\dfrac{2015}{2017}=\dfrac{2}{2017}\)
Do \(\dfrac{2}{x+1}=\dfrac{2}{2017}\Rightarrow x+1=2017\Leftrightarrow x=2016\)
Giải:
\(\dfrac{x+2015}{5}+\dfrac{x+2016}{4}=\dfrac{x+2017}{3}+\dfrac{x+2018}{2}\)
\(\Leftrightarrow2+\dfrac{x+2015}{5}+\dfrac{x+2016}{4}=2+\dfrac{x+2017}{3}+\dfrac{x+2018}{2}\)
\(\Leftrightarrow\dfrac{x+2015}{5}+1+\dfrac{x+2016}{4}+1=\dfrac{x+2017}{3}+1+\dfrac{x+2018}{2}+1\)
\(\Leftrightarrow\dfrac{x+2015+5}{5}+\dfrac{x+2016+4}{4}=\dfrac{x+2017+3}{3}+\dfrac{x+2018+2}{2}\)
\(\Leftrightarrow\dfrac{x+2020}{5}+\dfrac{x+2020}{4}=\dfrac{x+2020}{3}+\dfrac{x+2020}{2}\)
\(\Leftrightarrow\dfrac{x+2020}{5}+\dfrac{x+2020}{4}-\dfrac{x+2020}{3}-\dfrac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Vậy ...
a: \(\left(x-2\right)^2+\left(x-y\right)^6+3\ge3\)
\(\Leftrightarrow A=\dfrac{2003}{\left(x-2\right)^2+\left(x-y\right)^6+3}\le\dfrac{2003}{3}\)
Dấu '=' xảy ra khi x=y=2
b: \(B=-\left(2x+\dfrac{1}{3}\right)^6+3\le3\forall x\)
Dấu '=' xảy ra khi x=-1/6
c: \(C=\dfrac{x^{2016}+2015+2}{x^{2016}+2015}=1+\dfrac{2}{x^{2016}+2015}\le\dfrac{2}{2015}+1=\dfrac{2017}{2015}\)
Dấu '=' xảy ra khi x=0
\(\dfrac{x+1}{2017}+\dfrac{x+2}{2016}=\dfrac{x+3}{2015}-1\)
\(\Leftrightarrow\dfrac{x+1}{2017}+1+\dfrac{x+2}{2016}+1=\dfrac{x+3}{2015}-1+2\)
\(\Leftrightarrow\dfrac{x+100}{2017}+\dfrac{x+100}{2016}=\dfrac{x+100}{2015}\)
\(\Leftrightarrow\dfrac{x+100}{2017}+\dfrac{x+100}{2016}+\dfrac{x+100}{2015}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}+\dfrac{1}{2015}\right)=0\)
Do \(\dfrac{1}{2017}+\dfrac{1}{2016}+\dfrac{1}{2015}\ne0\) nên \(x+100=0\)
\(\Leftrightarrow x=\left(-100\right)\)
Vậy \(x=\left(-100\right)\)
(Thêm ở cả 2 vế cùng một số để tạo ra nhân tử chung ở tử (x + 2018))