K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2021

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3\left(x^2-4x\right)-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3\left(x^2-4x\right)-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-13x-10>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-11x-14>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

30 tháng 4 2021

3x2 - 12x - |x - 2| > 12

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-x+2>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x+x-2>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm là \(S=\left(-\infty;-1\right)\cup\left(5;+\infty\right)\)

2: \(-4x^2+5x-2\)

\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)

\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)

\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)

Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)

Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)

=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)

\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)

\(=16m^2+32m+16+4\left(1-4m^2\right)\)

\(=32m+20\)

Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)

=>32m+20<0

=>32m<-20

=>\(m< -\dfrac{5}{8}\)

NV
11 tháng 5 2021

\(\Leftrightarrow mx-m^2\ge x-1\Leftrightarrow\left(m-1\right)x\ge m^2-1\)

- Với \(m=1\) tập nghiệm của BPT là R (ktm)

- Với \(m>1\) \(\Rightarrow m-1>0\Rightarrow x\ge\dfrac{m^2-1}{m-1}=m+1\) hay \([m+1;+\infty)\) (ktm)

- Với \(m< 1\Rightarrow m-1< 0\Rightarrow x\le m+1\) hay \((-\infty;m+1]\) có vẻ giống?

Nhẩm trắc nghiệm thì \(ax>b\) có tập nghiệm chứa dương vô cùng khi a>0, có tập nghiệm chứa âm vô cùng khi a<0

\(ax< b\) thì ngược lại

11 tháng 5 2021

nhứt nách hehe

NV
21 tháng 2 2021

Xét \(x^2-5x+4\le0\Leftrightarrow1\le x\le4\Rightarrow D_1=\left[1;4\right]\)

Xét \(x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-m^2-1\right)\le0\)

- Nếu \(\left|m\right|\ge1\Rightarrow D_2=\left[2;m^2+1\right]\)

- Nếu \(\left|m\right|< 1\Rightarrow D_2=\left[m^2+1;2\right]\)

Do \(2\in\left[1;4\right]\), để \(D=D_1\cap D_2\) là 1 đoạn có độ dài bằng 1

\(\Leftrightarrow\left[{}\begin{matrix}m^2+1=1\\m^2+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm\sqrt{2}\end{matrix}\right.\)

19 tháng 3 2021

1.

ĐKXĐ: \(x=2\)

Xét \(x=2\), bất phương trình vô nghiệm

\(\Rightarrow\) bất phương trình đã cho vô nghiệm

\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn

Đề bài lỗi chăng.

11 tháng 5 2021

Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)

\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)

\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)

\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)

Yêu cầu bài toán thỏa mãn khi:

\(m\le minf\left(t\right)=-2\)

11 tháng 5 2021

viết rõ dòng cuối cho em được ko ạ em ko hiểu lắm

19 tháng 3 2021

\(-x^2-2\left(m-1\right)x+2m-1>0\)

\(\Leftrightarrow x^2+2\left(m-1\right)x-2m+1< 0\)

\(f\left(x\right)=x^2+2\left(m-1\right)x-2m+1\)

Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)=0\) có hai nghiệm phân biệt thỏa mãn \(x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+2m-1>0\\f\left(1\right)\le0\\f\left(0\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2>0\\1+2\left(m-1\right)-2m+1\le0\\-2m+1\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m\ge\dfrac{1}{2}\)