K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

Áp dụng Côsi

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

Tương tự: \(\frac{bc}{a}+\frac{ca}{b}\ge2c;\frac{ca}{b}+\frac{ab}{c}\ge2a\)

\(\Rightarrow2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)=2\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge1\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

Vậy GTNN của A là 1