K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

ta có: x^2+y^2+z^2=xy+3y+2z-4 =>  x^2+y^2+z^2-xy-3y-2z+4=0

=>x^2-xy+y^2/4 +3y^2/4 -3y+3+z^2-2x+1=0 0

=>(x- y/2)^2 + 3(y/2-1)^2 +(z-1)^2 =0 =>y/2 -1=0 =>y/2= 1 =>y= 2

                                                       =>x - y/2=0 => x -1 =0 => x=1

                                                       =>z-1=0 => z=1

từ đó ta có x+y+z=4

5 tháng 8 2017

Dễ thấy: \(x_0;y_0\ne 0\)

*)Xét \(x_0;y_0>0\) xài BĐT AM-GM

\(x^3+y^3+1\ge3\sqrt[3]{x^3y^3}=3xy\)

Xảy ra khi \(x=y=1\)

Khi đó \(\left(1+x_0\right)\left(1+\dfrac{1}{y_0}\right)\left(1+\dfrac{x_0}{y_0}\right)=8\)

*)Xét \(x_0;y_0<0\)\(\Rightarrow3xy>0;x^3+y^3+1\le0\) (loại)

5 tháng 8 2017

Bạn trả lời chi tiết hơn được ko

17 tháng 7 2016

 <=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0 
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0 
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0 
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0 

Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0 
<=> x = 1/2y và 1/2y = 1 và z = 1. 
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.

17 tháng 7 2016

Quá dễ bằng 0

14 tháng 9 2019

18 tháng 7 2019

2 tháng 3 2017

x^2 + y^2 + z^2 =xy +3y+2z-4 cơ mà

2(x^2 + y^2 + z^2)=2(xy+3y+2z-4)

2x^2 +2y^2 + 2z^2 -2xy-6y-4z+8=0

[(x^2 -2xy+y^2)+ 2(x-y)+1]+(x^2 -2x+1)+(y^2 -4y+4)+2(z^2 -2z+1)=0

[(x-y)^2 +2(x-y)+1]+(x-1)^2 +(y-2)^2 +2(z-1)^2 =0

(x-y+1)^2 +(x-1)^2 +(y-2)^2 +2(z-1)^2 =0

vì (x-y+1)^2 ;(x-1)^2;(y-2)^2;2(z-1)^2 lớn hơn hoặc bằng 0 với mọi x;y;z

suy ra (x-y+1)^2 =0 đồng thời (x-1)^2 =0 đồng thời (y-2)^2 =0 đồng thời 2(z-1)^2 =0

suy ra x-y+1=0 dong thoi x-1=0 dong thoi y-2=0 dong thoi 2(z-1)=0

suy ra x-y=-1 dong thoi x=1 dong thoi y=2 dong thoi z=1

Vậy Xo+Yo+Zo=1+2+1=4

2 tháng 3 2017

bằng 4

1 tháng 3 2018

5 tháng 2 2017