Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài cho:\(\left\{{}\begin{matrix}x-y+z=2012\\\frac{x}{y}=\frac{5}{2}\\\frac{y}{z}=\frac{52}{2012}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y+z=2012\\2x=5y\\52z=2012y\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y+z=2012\\2x-5y=0\\-2012y+52z=0\end{matrix}\right.\)
đến đây các bạn có thể giải bằng máy tính (mode 5 2) \(\begin{matrix}1&-1&1&2012\\2&-5&0&0\\0&-2012&52&0\end{matrix}\)
hoặc giải tay:\(\left\{{}\begin{matrix}x-y+z=2012\\x=\frac{5y}{2}\\z=\frac{2012y}{52}\end{matrix}\right.\)thế x và z vào ta được y từ đó suy ra x và z
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=\dfrac{45}{9}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
c: Ta có: 10x=6y
nên x/3=y/5
Đặt x/3=y/5=k
=>x=3k; y=5k
Ta có: \(2x^2-y^2=-28\)
\(\Leftrightarrow2\cdot9k^2-25k^2=-28\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
=>x=6; y=10
TRường hợp 2: k=-2
=>x=-6; y=-10
x và y tỉ lệ nghịch theo hệ số k
nên xy=k
=>y=k/x
y và z tỉ lệ thuận theo hệ số a
nên y=az
\(\Leftrightarrow a\cdot z=\dfrac{k}{x}\)
=>xz*a=k
=>xz=k/a
=>x và z tỉ lệ nghịch theo hệ số k/a
Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)
Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)
\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)
Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)
Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng
Như vậy (3),(4) đúng => (2) đúng
Từ đó suy ra \(T\ge\frac{4}{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)
\(\frac{t}{x}=\frac{4}{3}\Rightarrow\frac{x}{t}=\frac{3}{4}\)
Mà \(\frac{y}{z}=\frac{3}{2};\frac{z}{x}=\frac{1}{6}\)
\(\Rightarrow\frac{x}{t}.\frac{y}{z}.\frac{z}{x}=\frac{3}{4}.\frac{3}{2}.\frac{1}{6}\)
\(\Rightarrow\frac{y}{t}=\frac{9}{48}=\frac{3}{16}\)
Toán lớp 7 ạ