Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(5A=5+5^2+...+5^{51}\)
\(\Leftrightarrow4A=5^{51}-1\)
hay \(A=\dfrac{5^{51}-1}{4}\)
Bài 3:
\(S=\left(1^2+2^3+3^3+...+10^2\right)\cdot2=385\cdot2=770\)
Ta có : 12 + 22 + 32 + ..... + 102 = 385
=> 22(12 + 22 + 32 + ..... + 102) = 22.385
=> 22 + 42 + 62 + ...... + 202 = 4.385
=> 22 + 42 + 62 + ...... + 202 = 1540
Vậy 22 + 42 + 62 + ...... + 202 = 1540
S = 22.12+22.22+...+22+102
S = 22.(12+22+...+102)
S = 4.385
S = 1540
1/4×2/6×3/8×4/10×...×14/30×15/32=1/2^x
<=>1/(2×2)×2/(2×3)×...×14/(2×15)×15/2^5=1/2^x
<=>1/2×1/2×...×1/2×1/(2^5)=1/2^x
<=>1/2^19=1/2^x=>x=19
Đề mình không ghi lại nhé.
\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{4\times6\times10\times...\times30\times32}=\frac{1}{2^x}\)\(\frac{1}{2^x}\)
\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{2\times4\times6\times8\times10\times...\times30\times32}\)\(=\frac{1}{2^{x+1}}\)
\(\Rightarrow\frac{1}{2^{15}\times32}=\)\(\frac{1}{2^{x+1}}\)
\(\Rightarrow2^{15}\times2^5=2^{x+1}\)
\(\Rightarrow2^{20}=2^{x+1}\)
\(\Rightarrow x+1=20\Rightarrow x=19\)
Vậy \(x=1\)
Học tốt nhaaa!
Thay \(x=-1\) vào biểu thức đã cho, ta có\(2\left(x^2-1\right)+3x-2\) \(=2\left[\left(-1\right)^2-1\right]+3\left(-1\right)-2\)\(=2\left(1-1\right)-3-2\)\(=-5\)
Vậy tại \(x=-1\)thì \(2\left(x^2-1\right)+3x-2=-5\)
\(2^2+4^2+...+20^2\)
\(=\left(1.2\right)^2+\left(2.2\right)^2+...+\left(2.10\right)^2\)
\(=1^2.2^2+2^2.2^2+...+2^2+10^2\)
\(=2^2.\left(1^2+2^2+3^2+...+10^2\right)\)
\(=4.385\)
\(=1540\)