\(\dfrac{AG}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 4 2022

Lời giải:

$G$ là trọng tâm tam giác $ABC$

Theo tính chất trọng tâm và đường trung tuyến thì:

$\frac{AG}{AD}=\frac{2}{3}$

$\Rightarrow 3AG=2AD$

$\Rightarrow 2(AD-AG)=AG$

$\Rightarrow 2DG=AG\Rightarrow \frac{DG}{AG}=\frac{1}{2}$

$\frac{BG}{BE}=\frac{2}{3}$

$\Rightarrow \frac{BE-GE}{BE}=\frac{2}{3}$

$\Rightarrow 1-\frac{GE}{BE}=\frac{2}{3}$

$\Rightarrow \frac{GE}{BE}=\frac{1}{3}$

$\Rightarrow \frac{BE}{EG}=3$

AH
Akai Haruma
Giáo viên
26 tháng 4 2022

Hình vẽ:

Chọn B

4 tháng 3 2017

G A B C D E I K

Giải:

a) Ta có: \(AG=\frac{2}{3}AD\Rightarrow\frac{1}{2}AG=\frac{1}{2}.\frac{2}{3}AD\Rightarrow IG=\frac{1}{3}AD\)

\(GD=\frac{1}{3}AD\) ( tính chất đường trung tuyến )

\(\Rightarrow IG=GD\)

\(GB=\frac{2}{3}BE\Rightarrow\frac{1}{2}GB=\frac{1}{2}.\frac{2}{3}BE\Rightarrow KG=\frac{1}{3}BE\)

\(GE=\frac{1}{3}BE\) ( tính chất đường trung tuyến )

\(\Rightarrow GE=KG\)

Xét \(\Delta IKG,\Delta DEG\) có:

IG = GD ( cmt )

\(\widehat{IGK}=\widehat{EGD}\) ( đối đỉnh )

\(GK=GE\) ( cmt )

\(\Rightarrow\Delta IKG=\Delta DEG\left(c-g-c\right)\)

\(\Rightarrow IK=DE\) (

\(\Rightarrow\widehat{IKG}=\widehat{GED}\) ( góc t/ứng ) ( đpcm )

Mà 2 góc trên ở vị trí so le trong

\(\Rightarrow\)IK // DE ( đpcm )

b) Theo tính chất đường trung tuyến

\(\Rightarrow AG=\frac{2}{3}AD\left(đpcm\right)\)

Vậy...

15 tháng 4 2017

Bài 1:
A B C N M G H

Giải:

Gọi H là giao của AG và BC

Ta có: CN là đường trung tuyến ứng với AB

BM là đường trung tuyến ứng với AC

Mà BM = CN

\(\Rightarrow\Delta ABC\) cân tại A

Lại có 2 đường trung tuyến BM, CN cắt nhau tại G mà AH cũng cắt tại G nên từ đó AH là đường trung tuyến còn lại.

\(\Rightarrow AH\) cũng là đường cao ứng với cạnh BC

\(\Rightarrow AH\perp BC\)

hay \(AG\perp BC\)

15 tháng 4 2017

hình bạn tự vẽ nha

trên tia đối của tia AD lấy H sao cho AD=DH

tg ADB=tg HCD(c.g.c)

Xét \(\Delta ACH\)có AH<AC+CH (bất đẳng thức tam giác)

do AH=2AD nên 2AD<AC+CH

mà CH=AB nên 2AD<AB+AC (đpcm)

b)xét tg BGC có BG+GC>BC(bất đẳng thức tg)

mà BG\(=\dfrac{2}{3}BE\),\(GC=\dfrac{2}{3}CF\) nên \(\dfrac{2}{3}BE+\dfrac{2}{3}CF>BC\Rightarrow BE+CF>\dfrac{3}{2}BC\)(đpcm)

c)tương tự câu a ta có

2BE<AB+AC

2CF<BC+AC

suy ra 2(AD+BE+CF)<2(AB+AC+BC)

hay AD+BE+CF<AB+AC+BC (1)

tương tự câu b ta có CF+AD>\(\dfrac{3}{2}AC;BE+AD>\dfrac{3}{2}AD\)

cộng các vế với vế trong các bất đẳng thức trên ta có

2(AD+BE+CF)>3/2(AB+AC+BC)

\(\Leftrightarrow AD+BE+CF>\dfrac{3}{4}\left(AB+AC+BC\right)\left(2\right)\)

từ (1) và (2) ta có \(\dfrac{3}{4}\left(AB+AC+BC\right)< AD+BE+CF< AB+BC+AC\left(đpcm\right)\)


25 tháng 3 2017

em chịu

25 tháng 3 2017

có ai trả lời đc không? giúp mình với TT_TT

25 tháng 3 2017

Đợi xíu, còn 1 ý chưa ra

19 tháng 3 2017

Bài 4:

(Bạn tự vẽ hình theo đề bài nhé!)

Theo đề bài, ta có:

BE = \(\dfrac{1}{3}BC\) => CE = \(\dfrac{2}{3}BC\)

BA=BD => BC là đường trung tuyến ΔACD

=> E là trọng tâm ΔACD

AE∩CD tại K (gt) => K là trung điểm CD => CK = DK

20 tháng 3 2017

\(\cap\) kí hiệu này là gì vậy bn ?