K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì 1/2<>1/3

nên hệ luôn có nghiệm duy nhất

x+y=2 và 2x+3y=m

=>2x+2y=4 và 2x+3y=m

=>-y=4-m và x+y=2

=>y=m-4 và x=2-y=2-m+4=6-m

x+2y<5

=>6-m+2m-8<5

=>m-2<5

=>m<7

=>Có 6 số nguyên dương thỏa mãn

\(\left\{{}\begin{matrix}4x-3y=2\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-3y=2\\3x+3y=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

\(5x_0-2y_0=5\cdot2-2\cdot2=6\)

26 tháng 5 2022

\(\left\{{}\begin{matrix}4x-3y=2\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}16-7y=2\\x=4-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=4-2=2\end{matrix}\right.\)

\(=>5x_0-2y_0=5.2-2.2=6\)

14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

15 tháng 2 2016

=0 nha vân 

xo=-1;yo=1

20 tháng 5 2020

\(\left\{{}\begin{matrix}x_0-my_0=2-4m\\mx_0+y_0=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(y_0-4\right)\left(3-x_0\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(y_0-4\right)\left(3-x_0\right)\end{matrix}\right.\)

\(\Rightarrow\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)