K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

\(f\left(x\right)\) chia \(x-2\) dư \(11\Leftrightarrow f\left(x\right)=\left(x-2\right)H\left(x\right)+11\Leftrightarrow f\left(x\right)-11=\left(x-2\right)H\left(x\right)\)

\(f\left(x\right)\) chia \(x-3\) dư \(23\Leftrightarrow f\left(x\right)=\left(x-3\right)G\left(x\right)+23\Leftrightarrow f\left(x\right)-23=\left(x-3\right)G\left(x\right)\)

Do vậy \(\left(f\left(x\right)-11\right)\left(f\left(x\right)-23\right)=\left(x-2\right)\left(x-3\right)H\left(x\right)G\left(x\right)\)

\(\Rightarrow f\left(x\right)^2-34f\left(x\right)+253⋮\left(x-2\right)\left(x-3\right)\)

Do vậy \(f\left(x\right)\) chia \(\left(x-2\right)\left(x-3\right)\) dư \(-253\)

23 tháng 8 2023

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

AH
Akai Haruma
Giáo viên
31 tháng 3 2023

Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.

Theo bài ra ta có:

$f(2)=6067$

$f(-3)=-4043$

$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$

Cho $x=2$ thì:

$f(2)=0.Q(2)+2a+b=2a+b$

$\Leftrightarrow 6067=2a+b(1)$

Cho $x=-3$ thì:

$f(-3)=0.Q(-3)-3a+b=-3a+b$

$\Leftrightarrow -4043=-3a+b(2)$

Từ $(1); (2)\Rightarrow a=2022; b=2023$

Vậy đa thức dư là $2022x+2023$

Theo định lí Bezout, ta có:

+) f(x) chia x-3 dư 2 => f(3)=2

+) f(x) chia x+4 dư 9 => f(-4)=9

Do f(x) chia cho \(x^2+x-12\) được thương là \(x^2+3\) và còn dư nên giả sử ax+b là số dư thì \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\)

\(=x^4+x^3-9x^2+3x-36+ax+b\)

\(\Rightarrow f\left(3\right)=2\Leftrightarrow3^4+3^3-9.3^2+3.3-36+ax+b=2\)

\(\Rightarrow0+ax+b=2\Rightarrow3a+b=2\) (1)

\(f\left(-4\right)=9\Rightarrow\left(-4\right)^4+\left(-4\right)^3-9.\left(-4\right)^2-3.4-36-4a+b=9\)

\(\Rightarrow0-4a+b=9\Rightarrow4a-b=-9\) (2)

Từ (1) và (2) => (3a+b)+(4a-b)=2-9 => 7a=-7 => a=-1 => b=5 => ax+b=-x+5

\(\Rightarrow f\left(x\right)=x^4+x^3-9x^2+3x-36-x+5\)

\(=x^4+x^3-9x^2+2x-31\)

Vậy \(f\left(x\right)=x^4+x^3-9x^2+2x-31\)

22 tháng 12 2019

b=5 o dau ra vay

24 tháng 2 2022

-Đề thiếu.

15 tháng 1 2021

\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\)  và dư \(ax+b\)

=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)

Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5

=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\) 

=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1

15 tháng 1 2021

Giả sử đa thức bị chia là m (x)

Gia sử  thương là : q( x )

Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1

Suy ra , ta có : m( x ) =( x2 - 5x + 6 )                 q( x ) = ax + b

Đi tìm X

x2 - 5x + 6 = 0 

x2 - 2x - 3x + 6 = 0

 x( x - 2) - 3(x - 2) = 0

 ( x - 2)( x - 3) = 0

Vậy  x = 2 hoặc x = 3

Ta có  giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :

f( 2 ) = 5 

-> 2a + b = 5 ( 1)

Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó  ta được :

f( 3 ) = 7

-> 3a + b = 7 ( 2)

Từ ( 1  và  2) suy ra : a = 2 ; b = 1

Suy ra : f( x ) = ( x2 - 5x + 6 )      Thay số  q( x ) = 2x + 1

Vậy dư là 2x +1