Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz\)
\(A=x^2yz\) \(B=xy^2z\) \(C=xyz^2\)
\(A+B+C=x^2yz+xy^2z+xyz^2\)
\(=xyz\left(x+y+z\right)=xyz.1=xyz\)
Ta có:
\(A=x^2yz=x.x.y.z=x.xyz\left(1\right)\)
\(B=xy^2z=x.y.y.z=y.xyz\left(2\right)\)
\(C=xyz^2=x.y.z.z=z.xyz\left(3\right)\)
Lấy (1)+(2)+(3),vế theo vế ta được:
\(A+B+C=x.xyz+y.xyz+z.xyz=\left(x+y+z\right).xyz=xyz\) (vì x+y+z=1)
Vậy A+B+C=xyz (đpcm)
A+B+C=\(X^2\)YZ+X\(Y^2\)Z+XY\(Z^2\)=XXYZ+XYYZ+XYZZ=(X+Y+Z)XYZ
MÀ XYZ=1=>A+B+C=(X+Y+Z)*1=X+Y+Z
ta có A+B+C=x2yz+xy2z+xyz2
=x(xyz)+y(xyz)+z(xyz)
=x.1+y.1+z.1
=x+y+z(dpcm)
\(A=x^2yz=x.\left(xyz\right)=x.1=x\)
\(B=xy^2z=y.\left(xyz\right)=y.1=y\)
\(C=xyz^2=z.\left(xyz\right)=z.1=z\)
\(\Rightarrow A+B+C=x+y+z\)
Ta có : \(A+B+C=x^2yz+xy^2z+xyz^2\)
\(=xyz\left(x+y+z\right)\)
\(=xyz\left(đpcm\right)\)
help meeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
hộ caiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii