Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Do AB//CD nên góc ABD = BDC, ADB = CBD. Suy ra \(\Delta ABD=\Delta CDB\left(g-c-g\right)\Rightarrow AB=CD,AD=BC\)
b. Dễ thấy \(\Delta AOB=\Delta COD\left(g-c-g\right)\Rightarrow OA=OC,OB=OD\)
c. Xét tam giác ABC có AM và BO là các đường trung tuyến nên E là trọng tâm, vậy OB = 2EO.
Tương tự DF=2FO. Mà OD = OB. Vậy BE = EF = DF.
a)xét ΔADC và ΔABC có:
AC là cạnh chung
\(\widehat{DAC}=\widehat{BCA}\)(2 góc sole trong)
\(\widehat{DCA}=\widehat{BAC}\)(2 góc sole trong)
⇒ΔADC=ΔABC(g-c-g)
⇒AD=BC(2 cạnh tương ứng)
AB=DC(2 cạnh tương ứng)
b)xét ΔAOD và ΔBOC có:
\(\widehat{ADO}=\widehat{CBO}\)(2 góc sole trong)
\(\widehat{BCO}=\widehat{DAO}\)(2 góc sole trong)
AD=BC(câu a)
⇒ΔAOD=ΔBOC(g-c-g)
⇒AO=CO(2 cạnh tương ứng)
⇒O là trung điểm của AC
vì ΔAOD=ΔBOC ⇒DO=BO(2 cạnh tương ứng)
⇒O là trung điểm của BD
hay O cùng là trung điểm của AC và BD(đ.p.ch/m)
c)xét ΔAOM và ΔCOP có:
AC=CO(O là trung điểm của AC)
\(\widehat{AOM}=\widehat{COP}\)(2 góc đối đỉnh)
\(\widehat{MAO}=\widehat{BCO}\)(2 góc sole trong)
⇒ΔAOM=ΔCOP(g-c-g)
⇒MO=PO(2 cạnh tương ứng)
⇒O là trung điểm của MP(đ.p.ch/m)
GT : ABCD là hình thang ( AB< CD)
MA = MD
MN//AB//DC
KL: CM: N,E,F lần lượt là trung điểm của BC, BD,AC
Giải:
Xét hình thang ABCD có :
MA=MD ( gt)
MN//AB//DC ( gt)
=> MN là đường trung bình của hình thang ABCD
=> NB=NC
=> N là trung điểm của BC
Xét tam giác ABD có :
MA=MD ( gt)
MN//AB (gt) hay ME//AB(vì ME thuộc MN)
=> ME là đường trung bình của tam giác ABD
=> EB=ED
=> E là trung điểm của BD
Xét tam giác ABC có:
NB= NC ( cmt)
MN//AB ( gt ) hay FN//AB ( vì FN thuộc MN )
=> NF là đường trung bình của tam giác ABC
=> NB=NC
=> N là trung điểm của BC
(hình hơi xấu =P)
a,Xét tam giác ABO và tam giác COD có:
BO=OD (vì O là TĐ của BD)
AO=OC (vì O là TĐ của AC)
AOB = DOC (đối đỉnh)
\(\Rightarrow\)tam giác ABO=tam giác COD (c.g.c)
\(\Rightarrow\)AB=CD (hai cạnh tương ứng)
và BAO=OCD (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong tạo bởi AC cắt AB và DC => AB song song với CD
b, Xét tam giác AOD và tam giác OCD có:
BO=OD (vì O là TĐ của BD)
AO=OC (vì O là TĐ của AC)
AOD=BOC (đối đỉnh)
\(\Rightarrow\)tam giác AOD=tam giác OCD (c.g.c)
\(\Rightarrow\)AD=BC (hai cạnh tương ứng)
và BCO=OAD (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong tạo bởi AC cắt BC và AD => BC song song với AD
*Lưu ý: những chữ số viết liền nhau mà không ghi chữ "tam giác'' (như ABC) xin tự hiểu là góc