Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=126.16=2016\)
\(\Leftrightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=2016\)
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=2013\)
Vậy A = 2013
TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
\(P=\dfrac{\left(b+c\right)}{b}.\dfrac{\left(a+b\right)}{a}.\dfrac{\left(a+c\right)}{c}=\dfrac{-a}{b}.\dfrac{-c}{a}.\dfrac{-b}{c}=-1\)
TH2: \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a-b+c}{2b}=\dfrac{c-a+b}{2a}=\dfrac{a-c+b}{2c}=\dfrac{a-b+c+c-a+b+a-c+b}{2b+2a+2c}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-b+c}{2b}=\dfrac{1}{2}\\\dfrac{c-a+b}{2a}=\dfrac{1}{2}\\\dfrac{a-c+b}{2c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+c=2b\\c+b=2a\\a+b=2c\end{matrix}\right.\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Lời giải:
Áp dụng TCDTSBN:
$\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}$
$=\frac{a+b+c-d+b+c+d-a+c+d+a-b+d+a+b-c}{d+a+b+c}$
$=\frac{2(a+b+c+d)}{a+b+c+d}=2$
$\Rightarrow a+b+c-d=2d; b+c+d-a=2a; c+d+a-b=2b; d+a+b-c=2c$
$\Rightarrow a+b+c=3d; b+c+d=3a; c+d+a=3b; d+a+b=3c$
Khi đó:
\(P=\frac{a+b+c}{a}.\frac{b+c+d}{b}.\frac{c+d+a}{c}.\frac{a+b+d}{d}\\ =\frac{3d}{a}.\frac{3a}{b}.\frac{3b}{c}.\frac{3c}{d}=81\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)
\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)
\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\\ \Rightarrow\left\{{}\begin{matrix}b+c+d=3a\\a+c+d=3b\\a+b+d=3c\\a+b+c=3d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+d=2a\\a+b+c+d=2b\\a+b+c+d=2c\\a+b+c+d=2d\end{matrix}\right.\\ \Rightarrow2a=2b=2c=2d\\ \Rightarrow a=b=c=d\\ \Rightarrow A=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=1+1+1+1=4\)
A= \(\left(\dfrac{a}{b+c}+1\right)\)+\(\left(\dfrac{b}{a+c}+1\right)\)+\(\left(\dfrac{c}{a+b}+1\right)\)-3
= \(\dfrac{a+b+c}{b+c}\)+\(\dfrac{a+b+c}{a+c}\)+ \(\dfrac{c+a+b}{a+b}\) -3
= (a+b+c). (\(\dfrac{1}{b+c}\) + \(\dfrac{1}{a+c}\) + \(\dfrac{1}{a+b}\)) -3
= 2016. 1-3=2013
Đề bài của bạn cứ thiếu chỗ nào ấy