Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biết 3 cạnh của tam giác ABC tỉ lệ với các số 2,3,4. Tính các góc góc của tam giác ABC\
giúp mình với
Ta có: A:B:C =2:3:4
=> \(\frac{A}{2}\)=\(\frac{B}{3}\)= \(\frac{C}{4}\)
Ta có: \(\frac{A}{2}\)+\(\frac{B}{3}\)+\(\frac{C}{4}\)=\(\frac{180}{9}\)=\(20\)
=> \(\frac{A}{2}\)= 20 -> A=20.2=40 độ
=> \(\frac{B}{3}\)= 20 -> B=20.3=60 độ
=> \(\frac{C}{4}\)= 20 -> C=20.4=80 độ
Vậy: góc A=40 độ
Góc B=60 độ
Góc C=80 độ
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)
c) Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0-40^0=140^0\)
Ta có: \(\widehat{B}:\widehat{C}=3:4\)(gt)
nên \(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}\)
mà \(\widehat{B}+\widehat{C}=140^0\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{3+4}=\dfrac{140^0}{7}=20^0\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{\widehat{B}}{3}=20^0\\\dfrac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=60^0\\\widehat{C}=80^0\end{matrix}\right.\)
Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\left(40^0< 60^0< 80^0\right)\)
mà cạnh đối diện với \(\widehat{A}\) là cạnh BC
cạnh đối diện với \(\widehat{B}\) là cạnh AC
và cạnh đối diện với \(\widehat{C}\) là cạnh AB
nên BC<AC<AB
a)
vì A;B ;C tỉ lệ với 1;2;6
=>A/1=B/2=C/6
mà A+B+C=180 độ (tổng 3 g của 1 tg)
áp dụng tc dãy tỉ số = nhau ta có:
A/1=B/2=C/6=A+B+C/1+2+6=180/9=20 độ
=>A/1=20=>a=20 độ
=>B/2=20=>B=40 độ
=>C/6=20=>C=120độ