Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 2^4.(1^4+2^4+3^4+.....+10^4)
= 16 . 25333
= 405328
Tk mk nha
a) (-37) + 14 + 26 + 37
= [(-37) + 37] + (14 + 26)
= 0 + 40 = 40
b) (-24) + 6 + 10 + 24
= [(-24) + 24] + (10 + 6)
= 0 + 16 = 16
c) 15 + 23 + (-25) + (-23)
= [15 + (-25)] + [23 + (-23)]
= (-10) + 0 = -10
d) 60 + 33 + (-50) + (-33)
= [60 + (-50)] + [33 + (-33)]
= 10 + 0 = 10
e) (-16) + (-209) + (-14) + 209
= [(-16) + (-14)] + [(-209) + 209]
= (-30) + 0 = -30
f) \(-3^2+\left(-54\right)\div\left[\left(-2\right)^8+7\right]\times\left(-2\right)^2\\ =\left(-9\right)+\left(-54\right)\div263\times4\\ =\left(-9\right)+\dfrac{-216}{263}=\dfrac{-2583}{263}\)
a. \(\left[\left(-37\right)+37\right]+\left(14+16\right)\) = 30
B. \(\left[\left(-24\right)+24\right]+\left(10+6\right)\) = 16
C. \(\left[\left(-23\right)+23\right]+\left(15-23\right)\)= -8
d. \(\left[33-33\right]+\left(60-50\right)\) = 10
e. \(\left(209-209\right)+\left(-16-14\right)\)= -30
\(24\cdot(34-19)-34\cdot(24-19)\)
\(=24\cdot34-24\cdot19-34\cdot24-34\cdot19\)
\(=(24\cdot34-34\cdot24)-(24\cdot19-34\cdot19)\)
\(=0-(-190)=190\)
B=5(1/12−1/21+1/21−1/30)−5(1/24−1/34+1/34−1/44+1/44−1/54+1/54−1/64)
B=5(1/12−1/21+1/21−1/30+1/24−1/34+1/34−1/44+1/44−1/54+1/54−1/64 )
B=5(1/12−1/64)=5.13/192=65/192
a) \(\left(4^4.24.16^2\right):\left(4^3.8^3\right)=\left(2^8.2^3.3.2^8\right):\left(2^6.2^9\right)=\left(2^{19}.3\right):\left(2^{15}\right)=2^4.3=48\)
b) Quy luật của dãy S là 3k+1 (kϵN)
⇒ 3k+1=2023 ⇒ 3k=2022 ⇒ k=674
⇒ 2023 là phần tử của S
c) \(ab=10a+b\)
\(ba=10b+a\)
\(\Rightarrow ab-ba=9a-9b=9\left(a-b\right)\)
mà \(9⋮9\)
\(\Rightarrow ab-ba⋮9\left(a< b\right)\)
8 − 9 4 + 2 7 − − 6 − 3 7 + 5 4 − 3 + 2 4 − 9 7 = 8 − 9 4 + 2 7 + 6 + 3 7 − 5 4 − 3 − 2 4 + 9 7 = 8 + 6 − 3 − 9 4 − 5 4 − 2 4 + 2 7 + 3 7 + 9 7 = 11 − 4 + 2 = 9
\(S=\left(1\cdot2\right)^4+\left(2\cdot2\right)^4+...+\left(10\cdot2\right)^4\)
\(S=1^4\cdot2^4+2^4\cdot2^4+...+10^4\cdot2^4\)
\(S=2^4\cdot\left(1^4+2^4+3^4+...+10^4\right)\)
\(S=16\cdot25333=405328\)