K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-y^2=\left(x-y\right)\left(x+y\right)\)

10 tháng 11 2017

1. Ta có: \(\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)

\(=\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x^6+x^4+x^2+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)}\)

\(=\dfrac{x^4\left(x^2+1\right)+x^2+1}{x-1}\)

\(=\dfrac{\left(x^2+1\right)\left(x^4+1\right)}{x-1}\)

2.Ta có: \(\dfrac{x^2+y^2+z^2-2xy+2xz-2xz}{x^2-2xy+y^2-z^2}\)

\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}=\dfrac{\left(x-y+z\right)\left(x-y+z\right)}{\left(x-y-z\right)\left(x-y+z\right)}=\dfrac{x-y+z}{x-y-z}\)

_Chúc bạn học tốt_

11 tháng 11 2017

\(\text{1) }\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\\ =\dfrac{\left(x^7+x^6\right)+\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x+1\right)\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6+x^4+x^2+1}{\left(x-1\right)}\\ \)

\(\text{2) }\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\\ =\dfrac{\left(x^2-2xy+y^2\right)+\left(2xz-2yz\right)+z^2}{\left(x^2-2xy+y^2\right)-z^2}\\ =\dfrac{\left(x-y\right)^2+2z\left(x-y\right)+z^2}{\left(x-y\right)^2-z^2}\\ =\dfrac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}\\ =\dfrac{x-y+z}{x-y-z}\)

5 tháng 11 2017

\(\text{1) }\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\\ =\dfrac{\left(x^7+x^6\right)+\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6+x^4+x^2+1}{x-1}\)

\(\text{3) }\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\\ =\dfrac{\left(x^2-2xy+y^2\right)+\left(2xz-2yz\right)+z^2}{\left(x^2-2xy+y^2\right)-z^2}\\ =\dfrac{\left(x-y\right)^2+2\left(x-y\right)z+z^2}{\left(x-y\right)^2-z^2}\\ =\dfrac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}\\ =\dfrac{x-y+z}{x-y-z}\)

5 tháng 11 2017

Hỏi đáp ToánHỏi đáp ToánHỏi đáp Toán

\(P=\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\)

\(\Leftrightarrow P=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\) (Vì: \(x-y=1\))

\(\Leftrightarrow P=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\)

\(\Leftrightarrow P=\left(x^4-y^4\right)\left(x^4+y^4\right)-x^8+y^8+1\)

\(\Leftrightarrow P=x^8-y^8-x^8+y^8+1\)

\(\Leftrightarrow P=1\)

11 tháng 8 2021

bài bạn làm hơi sai

11 tháng 9 2017

BBieesn đổi hằng đẳng thức 

x²+4x+4

=x²+2.2x+2²

=(x+2)²

11 tháng 9 2017

Ta có:

\(x^2+4x+4\)

\(=x^2+2.2x+2^2\)

\(=\left(x+2\right)^2\)

19 tháng 7 2018

\(x^2+10x+26+y^2+2y\)

\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)

\(=\left(x+5\right)^2+\left(y+1\right)^2\)

\(\left(x+y+4\right)\left(x+y-4\right)\)

\(=\left(x+y\right)^2-16\)

\(=x^2+y^2+2xy-16\)

19 tháng 7 2018

a, =(x^2 +10x+25) +(y^2 +2y+1)

    = (x+5)^2 +(y+1)^2

b, =(x+y)^2 -4^2

    = x^2 + 2xy+ y^2 -16

5 tháng 8 2020

a, (y-x^2)^2:(y-x^2) =y-x^2

b, (x-y^2)^2:(y-x^2)=x-y^2

học tốt

5 tháng 8 2020

Bài làm:

a) \(\left(x^4-2x^2y+y^2\right)\div\left(y-x^2\right)\)

\(=\left(x^2-y\right)^2\div\left(y-x^2\right)\)

\(=\left(y-x^2\right)^2\div\left(y-x^2\right)\)

\(=y-x^2\)

b) \(\left(x^2-2xy^2+y^4\right)\div\left(x-y^2\right)\)

\(=\left(x-y^2\right)^2\div\left(x-y^2\right)\)

\(=x-y^2\)

2 tháng 9 2018

\(a,4x^2-y^2+2y-1\)

\(=4x^2-\left(y^2-2y+1\right)\)

\(=\left(2x\right)^2-\left(y-1\right)^2\)

\(=\left(2x-y+1\right)\left(2x+y-1\right)\)