K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2021

\(A=\dfrac{cosx+cosy}{cosx-cosy}=\dfrac{2cos\dfrac{x+y}{2}.cos\dfrac{x-y}{2}}{-2sin\dfrac{x+y}{2}.sin\dfrac{x-y}{2}}=-cot\dfrac{x+y}{2}.cot\dfrac{x-y}{2}\)

\(B=\dfrac{sin7x+sin5x}{sin7x-sin5x}=\dfrac{2sin6x.cosx}{2cos6x.sinx}=tan6x.cotx\)

14 tháng 6 2020

\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)

\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)

\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)

\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)

10 tháng 6 2021

\(sin\dfrac{3x}{2}\left(cosx+cos4x+cos7x\right)\)

\(=\)\(sin\dfrac{3x}{2}.cosx+sin\dfrac{3x}{2}.cos4x+sin\dfrac{3x}{2}.cos7x=\dfrac{1}{2}\left[sin\dfrac{x}{2}+sin\dfrac{5x}{2}\right]+\dfrac{1}{2}\left[sin\left(-\dfrac{5x}{2}\right)+sin\dfrac{11x}{2}\right]+\dfrac{1}{2}\left[sin\left(-\dfrac{11x}{2}\right)+sin\dfrac{17x}{2}\right]\)

\(=\dfrac{1}{2}\left(sin\dfrac{x}{2}+sin\dfrac{17x}{2}\right)\)\(=\dfrac{1}{2}.2.sin\dfrac{9x}{2}.cos4x=sin\dfrac{9x}{2}.cos4x\) 

\(sin\dfrac{3x}{2}\left(sinx+sin4x+sin7x\right)\)

\(=sin\dfrac{3x}{2}.sinx+sin\dfrac{3x}{2}.sin4x+sin\dfrac{3x}{2}.sin7x\)\(=\dfrac{1}{2}\left(cos\dfrac{x}{2}-cos\dfrac{5x}{2}\right)+\dfrac{1}{2}\left(cos\dfrac{-5x}{2}-cos\dfrac{11x}{2}\right)+\dfrac{1}{2}\left(cos\dfrac{-11x}{2}-cos\dfrac{17x}{2}\right)\)

\(=\dfrac{1}{2}\left(cos\dfrac{x}{2}-cos\dfrac{17x}{2}\right)\)\(=\dfrac{1}{2}.-2.sin\dfrac{9x}{2}.sin\left(-4x\right)=sin\dfrac{9x}{2}.sin4x\)

Có \(\dfrac{cos7x+cos4x+cosx}{sin7x+sin4x+sinx}\)

\(=\dfrac{sin\dfrac{3x}{2}\left(cos7x+cos4x+cosx\right)}{sin\dfrac{3x}{2}\left(sin7x+sin4x+sinx\right)}\)\(=\dfrac{sin\dfrac{9x}{2}.cos4x}{sin\dfrac{9x}{2}.sin4x}\)\(=\dfrac{cos4x}{sin4x}\)

\(\Rightarrow\dfrac{cos4x}{sin4x}=\dfrac{1}{2}\)

\(\Leftrightarrow2cos4x=sin4x\)

\(\Leftrightarrow4.cos^24x=sin^24x\)

\(\Leftrightarrow4.cos^24x=1-cos^24x\)\(\Leftrightarrow cos^24x=\dfrac{1}{5}\Leftrightarrow\dfrac{1+cos8x}{2}=\dfrac{1}{5}\)

\(\Leftrightarrow cos8x=-\dfrac{3}{5}\)

Vậy..

10 tháng 6 2021

bạn ơi sao bạn có được \(sin\dfrac{3x}{2}\) dạ bạn??

a: \(A=\sqrt{3}\left(\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx\right)+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)

\(=\dfrac{\sqrt{3}}{2}sinx-\dfrac{3}{2}cosx+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)

\(=\sqrt{3}sinx-cosx\)

c: \(=2\left[\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right]+4sinx+1\)

\(=\sqrt{3}sin2x-cos2x+4sinx+1\)

d: \(D=\sqrt{3}cos2x+sin2x+2\cdot\left(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right)\)

\(=\sqrt{3}\cdot cos2x+sin2x+\sqrt{3}\cdot sin2x-cos2x\)

\(=cos2x\left(\sqrt{3}-1\right)+sin2x\left(1+\sqrt{3}\right)\)

18 tháng 5 2021

\(x+2y=\dfrac{\pi}{2}\)

\(\Leftrightarrow x+y=\dfrac{\pi}{2}-y\) thay vào A được:

\(A=\dfrac{cos\left(\dfrac{\pi}{2}-y\right)-cosy}{cos\left(\dfrac{\pi}{2}-y\right)+cosy}\)\(=\dfrac{siny-cosy}{siny+cosy}\)\(=\dfrac{\dfrac{\sqrt{2}}{2}.siny-\dfrac{\sqrt{2}}{2}.cosy}{\dfrac{\sqrt{2}}{2}.siny+\dfrac{\sqrt{2}}{2}cosy}\)\(=\dfrac{cos\dfrac{\pi}{4}.siny-sin\dfrac{\pi}{4}.cosy}{sin\dfrac{\pi}{4}.siny+cos\dfrac{\pi}{4}.cosy}\)

\(=\dfrac{sin\left(y-\dfrac{\pi}{4}\right)}{cos\left(y-\dfrac{\pi}{4}\right)}\)\(=tan\left(y-\dfrac{\pi}{4}\right)\)

NV
18 tháng 5 2021

\(x+2y=\dfrac{\pi}{2}\Rightarrow x+y=\dfrac{\pi}{2}-y\)

\(\Rightarrow cos\left(x+y\right)=cos\left(\dfrac{\pi}{2}-y\right)\)

\(\Rightarrow cos\left(x+y\right)=siny\)

Do đó: \(A=\dfrac{siny-cosy}{siny+cosy}=\dfrac{\sqrt{2}sin\left(y-\dfrac{\pi}{4}\right)}{\sqrt{2}cos\left(y-\dfrac{\pi}{4}\right)}=tan\left(y-\dfrac{\pi}{4}\right)\)

NV
7 tháng 6 2020

\(A=cosx+cos3x+cos2x=2cos2x.cosx+cos2x\)

\(=cos2x\left(2cosx+1\right)\)

\(B=sin3x+sin5x+sin4x=2sin4x.cosx+sin4x\)

\(=sin4x\left(2cosx+1\right)\)

NV
25 tháng 4 2019

\(\frac{sinx+sin5x+sin3x}{cosx+cos5x+cos3x}=\frac{2sin3x.cos2x+sin3x}{2cos3x.cos2x+cos3x}=\frac{sin3x\left(2cos2x+1\right)}{cos3x\left(2cos2x+1\right)}=\frac{sin3x}{cos3x}=tan3x\)

NV
29 tháng 5 2020

\(\left(sinx+siny\right)^2=3\Leftrightarrow sin^2x+sin^2y+2sinxsiny=3\) (1)

\(\left(cosx-cosy\right)^2=1\Leftrightarrow cos^2x+cos^2y-2cosx.cosy=1\) (2)

Cộng vế với vế (1) và (2):

\(sin^2x+cos^2x+sin^2y+cos^2y-2\left(cosx.cosy-sinx.siny\right)=4\)

\(\Leftrightarrow2-2cos\left(x+y\right)=4\)

\(\Rightarrow cos\left(x+y\right)=-1\)