Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: UCLN(48;72;240)=24
BCNN(18;24;30)=360
b: UCLN(24;36;160)=8
BCNN(24;36;160)=1440
Lời giải:
Gọi ƯCLN của $a,b$ là $d$. Khi đó, đặt $a=dx, b=dy$ thì $(x,y)=1$
Ta có:
$ab=dxdy=d^2xy=320(1)$
$BCNN(a,b)=dxy=160$
$\Rightarrow d=\frac{d^2xy}{dxy}=\frac{320}{160}=2$
Thay vào (1) suy ra $xy=80$Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,80),(16,5), (80,1), (5,16)$
$\Rightarrow (a,b)=(2,160), (32,10),(160,2), (10,32)$
số | ƯCLN | BCNN |
24 và 10 | 2 | 120 |
30 và 28 | 2 | 420 |
150 và 84 | 6 | 2100 |
11 và 15 | 1 | 165 |
30 và 90 | 30 | 90 |
140;210 và 56 | 14 | 840 |
105;84 và 30 | 3 | 420 |
14;82 và 30 | 2 | 8610 |
24;36 và 160 | 4 | 1440 |
200;125 và 75 | 25 | 1000 |
đúng thì k mình nh
Vì a*b=BCNN(a;b)*UCLN(a;b)
Suy ra: UCLN(a;b)=320/160=2
a=2*m
b=2*n
UCLN(m;n)=1
Ta có a*b=(2*m)*(12*n)=320
m*n*4=320
m*n=80
Nếu m=80 => a=160
n=1 => b=2
Nếu m=40 =>a=80
n=2 => b=4
Nếu m=20 => a=40
n=4 => b=8
Nếu m=16 => a=32
n=5 => b=10
\(BCNN\left(20,30\right)=60\\ BCNN\left(84,108\right)=756\\ BCNN\left(45,150\right)=450\\ BCNN\left(12,15,10\right)=60\)
`150=2.3.5^2;160=2^5 .5`
`=>lcm(150;160)=2^5 .3.5^2=2400`