Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rồi nhá,gặp thánh rồi
1.Số tự nhiên là vĩnh cửu,không thể tìm ra một con số chính xác
2.(Tìm được,nhưng mình không giải được)
3.Như câu 1
4.Như câu 3
OK?
a: \(\overline{abc}\)
a có 3 cáhc
b có 4 cáhc
c có 4 cách
=>Có 3*4*4=48 cách
b: \(\overline{abcd}\)
a có 3 cách
b có 3 cách
c có 2 cách
d có 1 cách
=>Có 3*3*2=18 cách
c: \(\overline{abc}\)
c có 1 cách
a có 3 cách
b có 4 cách
=>Có 1*3*4=12 cách
d: \(\overline{abcd}\)
TH1: d=0
=>Có 3*4*4=48 cách
TH2: d<>0
d có 2 cách
a có 3 cách
b có 4 cách
c có 4 cách
=>Có 4*4*3*2=16*6=96 cách
=>Có 144 cách
Vì số chẵn nên chữ số hàng đơn vị phải là chữ số chẵn
+) Chữ số hàng đơn vị có 2 cách chọn (chọn 2 hoặc 4)
+) Với mỗi cách chọn chữ số hàng đơn vị : Có 4 cách chọn chữ số hàng trăm ( chọn 1 hoặc 3 hoặc 5 và chữ số chẵn còn lại)
+) Với mỗi cách chọn chữ số hàng trăm : Có 3 cách chọn chữ số hàng chục ( là Chọn một trong số còn lại )
Vậy có tất cả: 2 x 4 x 3 = 24 số
450,405,540,504
630,603,360,306
945,954,459,495,549,594
963,936,369,396,693,639
có thể lập được tất cả 20 số nha bạn
k mik nha
a. 12345;12340;23451;23145;20135;...
b) lớn nhất: 54320
bé nhất: 10234
tick nhá
a)
1023;1024;1025;1032;1034;1035;1042;1043;1045;1052;1053;1054;1203;1204;1205;1230;1234;1235;1240;1241;1243;1245;1250;1253;1254; 1302;1304;1305;1320;1324;1325;1352;1345;1352;1354;1402;1403;1405;1420;1423;1425;1430;1432;1435;1450;1452;1453;1502;1503;1504;15201;1523;1524;1530;1532;1534;1540;1542;1543;2013;2014;2015;2130;2134;2135;2340;2342;2345;...
Theo mình tính thì trong hàng số 1.000 thì có 60 số vậy hàng 2;3;4;5 cũng có 60 số; vậy, ta có: 1;2;3;4;5 là 5 số, ta lấy: 60x5= 300 số.
Ta biết rằng số chẵn bằng phân nữa số lẻ: nên, ta lấy: 300:2= 150 số chẵn
Vậy: có 150 số chẵn.
b) Số chẵn lớn nhất có 4 chữ số là: 5432
Số lẻ bé nhất có 4 chữ số là: 1023
Gọi số lập được có dạng là \(\overline{abcd}\)
TH1: d=0
a có 4 cách chọn
b có 3 cách chọn
c có 2 cách chọn
Do đó: Có \(4\cdot3\cdot2=24\left(cách\right)\)
TH2: \(d\ne0\)
d có 2 cách chọn
a có 3 cách chọn
b có 3 cách chọn
c có 2 cách chọn
Do đó: Có \(2\cdot3\cdot3\cdot2=36\left(cách\right)\)
Tổng số số lập được là 24+36=60(cách)
Gọi số lập được có dạng là \(\overline{abcd}\)
TH1: d=0
a có 4 cách chọn
b có 3 cách chọn
c có 2 cách chọn
Do đó: Có \(4\cdot3\cdot2=24\left(cách\right)\)
TH2: \(d\ne0\)
d có 2 cách chọn
a có 3 cách chọn
b có 3 cách chọn
c có 2 cách chọn
Do đó: Có \(2\cdot3\cdot3\cdot2=36\left(cách\right)\)
Tổng số số lập được là 24+36=60(cách)