Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\dfrac{6\left(16x+3\right)}{7}-8=\dfrac{3\left(16x+3\right)}{7}+7\)
\(\Leftrightarrow6\left(16x+3\right)-56=3\left(16x+3\right)+49\)
\(\Leftrightarrow96x+18-56-48x-9-49=0\)
\(\Leftrightarrow48x=96\)
\(\Leftrightarrow x=2\)
Vậy phương trình đã cho có nghiệm x=2
a) Đặt u = \(\dfrac{16x+3}{7}\), ta có:
\(\dfrac{6\left(16x+3\right)}{7}\) - 8 = \(\dfrac{3\left(16x+3\right)}{7}\) + 7
<=> 6.u - 8 = 3.u + 7
=> 6.u - 3.u = 8 + 7
=> 3.u = 15
=> u = 15 / 3
=> u = 5
<=> \(\dfrac{16x+3}{7}\) = 5
=> 16x + 3 = 5 . 7
=> 16x = 35 - 3
=> 16x = 32
=> x = 32 / 16
=> x = 2
Vậy S = { 2 }.
\(\frac{x}{2008}+\frac{x+1}{2009}+...+\frac{x+4}{2012}=5\)
\(\Leftrightarrow\left(\frac{x}{2008}-1\right)+\left(\frac{x+1}{2009}-1\right)+...+\left(\frac{x+4}{2012}-1\right)=0\)
\(\Leftrightarrow\frac{x-2008}{2008}+\frac{x-2008}{2009}+...+\frac{x-2008}{2012}=0\)
\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{2008}+\frac{1}{2009}+..+\frac{1}{2012}\right)=0\)
Mà \(\left(\frac{1}{2008}+\frac{1}{2009}+..+\frac{1}{2012}\right)\ne0\)
Nên \(x-2008=0\)
\(\Leftrightarrow x=2008\)
Vậy : \(x=2008\)
\(\frac{x}{2008}+\frac{x+1}{2009}+\frac{x+2}{2010}+\frac{x+3}{2011}+\frac{x+4}{2012}=5\)
\(\Leftrightarrow\frac{x}{2008}+\frac{x+1}{2009}+\frac{x+2}{2010}+\frac{x+3}{2011}+\frac{x+4}{2012}-5=0\)
\(\Leftrightarrow\left(\frac{x}{2008}-1\right)+\left(\frac{x+1}{2009}-1\right)+\left(\frac{x+2}{2010}-1\right)+\left(\frac{x+3}{2011}-1\right)+\left(\frac{x+4}{2012}-1\right)=0\)
\(\Leftrightarrow\frac{x-2008}{2008}+\frac{x-2008}{2009}+\frac{x-2008}{2010}+\frac{x-2008}{2011}+\frac{x-2008}{2012}=0\)
\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)=0\)
Vì \(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\ne0\)
\(\Rightarrow x-2008=0\)\(\Leftrightarrow x=2008\)
Vậy \(x=2008\)
`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`
`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`
`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`
`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)
`<=>x=2014`
Vậy `S={2014}`.
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2013}-1\right)+\left(\dfrac{x-2}{2012}-1\right)+\left(\dfrac{x-3}{2011}-1\right)=\left(\dfrac{x-4}{2010}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
\(\Leftrightarrow\left(x-2014\right).A=0\)
\(\text{Vì A }\ne0\)
\(\Rightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{2014\right\}\)
\(\dfrac{x+1}{2012}+\dfrac{x+2}{2011}=\dfrac{x+3}{2010}+\dfrac{x+4}{2009}\)
\(\Leftrightarrow1+\dfrac{x+1}{2012}+1+\dfrac{x+2}{2011}=1+\dfrac{x+3}{2010}+1+\dfrac{x+4}{2009}\) \(\Leftrightarrow\dfrac{x+1+2012}{2012}+\dfrac{x+2+2011}{2011}=\dfrac{x+3+2010}{2010}+\dfrac{x+4+2009}{2009}\) \(\Leftrightarrow\dfrac{x+2013}{2012}+\dfrac{x+2013}{2011}-\dfrac{x+2013}{2010}-\dfrac{x+2013}{2009}=0\) \(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}\right)=0\)
Vì \(\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}\ne0\)
\(\Rightarrow x+2013=0\)
\(\Rightarrow x=-2013\)
Vậy........
\(\dfrac{x+1}{2012}+\dfrac{x+2}{2011}=\dfrac{x+3}{2010}+\dfrac{x+4}{2009}\)
\(\Leftrightarrow\dfrac{x+1}{2012}+1+\dfrac{x+2}{2011}+1=\dfrac{x+3}{2010}+1+\dfrac{x+4}{2009}+1\)
\(\Leftrightarrow\dfrac{x+2013}{2012}+\dfrac{x+2013}{2011}-\dfrac{x+2013}{2010}-\dfrac{x+2013}{2009}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}\right)=0\)
\(\Leftrightarrow x=-2013\)(vì \(\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}\ne0\))
Đặt
Suy ra
Phương trình đã cho trở thành:
0,05.2u = 3,3 − u ⇔ 0,1u = 3,3 – u ⇔ 1,1u = 3,3 ⇔ u = 3.
Do đó:
⇔ x – 2010 = 0
⇔ x = 2010.