Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
tự làm nốt~
kudo shinichi làm sai ở chỗ:
\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé
a) \(4\left(x-3\right)^2=9\left(2-3x\right)^2\)
\(\Leftrightarrow\left(2x-6\right)^2=\left(6-9x\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=6-9x\\2x-6=9x-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}11x=12\\7x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{11}\\x=0\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{12}{11};0\right\}\)
b) \(ĐKXĐ:x\ne\pm1\)
\(\frac{x+1}{x-1}+\frac{x^2+3x-2}{1-x^2}=\frac{x-1}{x+1}\)
\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x^2+3x-2}{x^2-1}-\frac{x-1}{x+1}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2-x^2-3x+2-\left(x-1\right)^2}{x^2-1}=0\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2-3x+2-x^2+2x-1}{x^2-1}=0\)
\(\Leftrightarrow-x^2+x+2=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}+...+\frac{x+2010}{1}=\left(-2010\right)\)
\(\Rightarrow\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+2}{2009}+1\right)+...+\left(\frac{x+2010}{1}+1\right)=-2010+2010\)
\(\Rightarrow\frac{x+2011}{2010}+\frac{x+2011}{2009}+...+\frac{x+2011}{1}=0\)
\(\Rightarrow\left(x+2011\right)\left(1+\frac{1}{2}+...+\frac{1}{2009}+\frac{1}{2010}\right)=0\)
\(\Rightarrow x+2011=0\Leftrightarrow x=-2011\)
a) \(\frac{4-3x}{5}-\frac{4-x}{10}=\frac{x+2}{2}\)
\(\frac{8-6x-4+x}{10}=\frac{5x+10}{10}\)
\(4-5x=5x+10\)
\(4-5x-5x-10=0\)
\(-6-10x=0\)
\(\Rightarrow x=\frac{-3}{5}\)
Vậy....
\(\frac{4-3x}{5}-\frac{4-x}{10}=\frac{x+2}{2}\)
\(\Leftrightarrow\)\(\frac{2.\left(4-3x\right)}{10}-\frac{4-x}{10}=\frac{5.\left(x+2\right)}{10}\)
\(\Rightarrow\) 2.( 4 - 3x ) - 4 + x = 5.( x + 2 )
\(\Leftrightarrow\)8 - 6x - 4+ x = 5x + `10
\(\Leftrightarrow\)-6x + x - 5x = -8 + 4 + 10
\(\Leftrightarrow\) -10x = 6
\(\Leftrightarrow\)\(x=\frac{-3}{5}\)
Vậy phương trình có nghiệm là: \(x=\frac{-3}{5}\)
b ) \(\frac{x+1}{2009}+\frac{x+2}{2008}=\frac{x+2007}{3}+\frac{x+2006}{4}\)
\(\Leftrightarrow\) \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1\)\(=\frac{x+2007}{3}+1+\frac{x+2006}{4}+1\)
\(\Leftrightarrow\)\(\frac{x+1}{2009}+\frac{2009}{2009}+\frac{x+2}{2008}+\frac{2008}{2008}\)\(=\frac{x+2007}{3}+\frac{3}{3}+\frac{x+2006}{4}+\frac{4}{4}\)
\(\Leftrightarrow\)\(\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{3}+\frac{x+2006}{4}\)
\(\Leftrightarrow\)\(\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{3}-\frac{x+2010}{4}=0\)
\(\Leftrightarrow\)\(\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(x+2010=0\) ( Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\ne0\))
\(\Leftrightarrow\) \(x=-2010\)
Vậy phương trình có nghiệm là: x = -2010
a, (3x - 2)(4x + 3) = (2 - 3x)(x - 1)
\(\Leftrightarrow\) (3x - 2)(4x + 3) - (2 - 3x)(x - 1) = 0
\(\Leftrightarrow\) (3x - 2)(4x + 3) + (3x - 2)(x - 1) = 0
\(\Leftrightarrow\) (3x - 2)(4x + 3 + x - 1) = 0
\(\Leftrightarrow\) (3x - 2)(5x + 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{-2}{5}\end{matrix}\right.\)
Vậy S = {\(\frac{2}{3}\); \(\frac{-2}{5}\)}
b, x2 + (x + 3)(5x - 7) = 9
\(\Leftrightarrow\) x2 - 9 + (x + 3)(5x - 7) = 0
\(\Leftrightarrow\) (x - 3)(x + 3) + (x + 3)(5x - 7) = 0
\(\Leftrightarrow\) (x + 3)(x - 3 + 5x - 7) = 0
\(\Leftrightarrow\) (x + 3)(6x - 10) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\6x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{5}{3}\end{matrix}\right.\)
Vậy S = {-3; \(\frac{5}{3}\)}
c, 2x2 + 5x + 3 = 0
\(\Leftrightarrow\) 2x2 + 2x + 3x + 3 = 0
\(\Leftrightarrow\) 2x(x + 1) + 3(x + 1) = 0
\(\Leftrightarrow\) (x + 1)(2x + 3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy S = {-1; \(\frac{3}{2}\)}
d, \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}=\frac{3-2x}{2009}+\frac{3-2x}{2010}\)
\(\Leftrightarrow\) \(\frac{3-2x}{2006}+\frac{3-2x}{2007}+\frac{3-2x}{2008}-\frac{3-2x}{2009}-\frac{3-2x}{2010}=0\)
\(\Leftrightarrow\) (3 - 2x)\(\left(\frac{1}{2006}+\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)\) = 0
\(\Leftrightarrow\) 3 - 2x = 0
\(\Leftrightarrow\) x = \(\frac{3}{2}\)
Vậy S = {\(\frac{3}{2}\)}
Chúc bn học tốt!!
\(a,\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)
\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)
\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)
\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}=\frac{2015}{2002}+\frac{2015-x}{2003}\)
\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}>0\)
\(\Leftrightarrow2015-x=0\)
\(\Leftrightarrow x=2015\)
KL : PT có nghiệm \(S=\left\{2015\right\}\)
\(\frac{x+1}{2011}+\frac{x+2}{2010}=\frac{x+3}{2009}+\frac{x+4}{2008}\Leftrightarrow\frac{x+1}{2011}+1+\frac{x+2}{2010}+1=\frac{x+3}{2009}+1+\frac{x+4}{2008}+1\)
\(\Leftrightarrow\frac{x+1}{2011}+\frac{2011}{2011}+\frac{x+2}{2010}+\frac{2010}{2010}=\frac{x+3}{2009}+\frac{2009}{2009}+\frac{x+4}{2008}+\frac{2008}{2008}\)
\(\Leftrightarrow\frac{x+1+2011}{2011}+\frac{x+2+2010}{2010}=\frac{x+3+2009}{2009}+\frac{x+4+2008}{2008}\)
\(\Leftrightarrow\frac{x+2012}{2011}+\frac{x+2012}{2010}=\frac{x+2012}{2009}+\frac{x+2012}{2008}\)
\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2012\right)\left(\frac{1}{2009}+\frac{1}{2008}\right)\)
\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}=0\right)\)
mà 1/2011+1/2010-1/2009-1/2008 khác 0
\(\Rightarrow x+2012=0\Rightarrow x=-2012\)
\(\left(3x-2\right)^2-x\left(9x-2\right)=24\Leftrightarrow9x^2-12x+4-9x^2+2x=24\)
\(\Leftrightarrow-10x+4=24\Leftrightarrow-10x=20\Leftrightarrow x=-2\)
1; Ta có : x+1/2011 + x+2/2010 = x+3/2009 + x+4/ 2008
Suy ra: 2+(x+1/2011 + x+2/2010 ) = 2+( x+3/2009 + x+4/2008)
suy ra ban tach 2=1+1 roi cong 1 voi tưng phân số trên nha sẽ ra kết quả ngay thôi
2; gợi ý nè : (3x-2)^2 =(3x)^2 + 2*3x*2+2^2