K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

\(\left(3x+1\right)y+x=4\)

\(3.\left(x+\frac{1}{3}\right)y+x+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)

\(\left(3y+1\right)\left(x+\frac{1}{3}\right)=4\)

y nguyên nên 3y+1 nguyên

Tích 2 số nguyên nên \(x+\frac{1}{3}\in Z\)

Suy ra x không nguyên -> Trái với đề bài

Vậy không có x, y thỏa mãn.

27 tháng 11 2021

25 Độ

22 tháng 10 2021

bạn ơi cái này là tìm về cái gì?

22 tháng 10 2021

ý bạn là \(x-y-z=-33?\)

Ta có \(2x=3y=5z\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-y-z}{15-10-6}=\dfrac{-33}{-1}=33\\ \Rightarrow\left\{{}\begin{matrix}x=33\cdot15=495\\y=33\cdot10=330\\z=33\cdot6=198\end{matrix}\right.\)

21 tháng 10 2016

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

21 tháng 10 2016

Bài 3:

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=k^3\)

=> \(\frac{a}{d}=k^3\) (1)

Lại có: \(\frac{a+b+c}{b+c+d}=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\) (2)

Từ (1) và (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

\(\left|3x-4\right|-\left|y+3\right|=0\)

\(\Rightarrow\left|3x-4\right|+\left|3-y\right|=0\)

\(\Rightarrow\hept{\begin{cases}3x-4=0\\3-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=3\end{cases}}}\)

28 tháng 8 2016

sai bét:

x=4/3;y=3

(vừa nhanh vừa gọn)

30 tháng 9 2021

\(1,M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\right)\cdot\dfrac{2013}{2012}\\ M=\left(\dfrac{2\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}\right)}\right)\cdot\dfrac{2013}{2012}\\ M=\left(\dfrac{2}{7}-\dfrac{2}{7}\right)\cdot\dfrac{2013}{2012}=0\)

\(\left|x^2+\left|x-2\right|\right|=x^2+2021\\ \Leftrightarrow\left[{}\begin{matrix}x^2+\left|x-2\right|=x^2+2021\\x^2+\left|x-2\right|=-x^2-2021\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=2021\\\left|x-2\right|=-2x^2-2021\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\pm2021\\x\in\varnothing\left(-2x^2-2021< 0\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2023\\x=-2019\end{matrix}\right.\)

\(3,\\ A=\left(x-\dfrac{2}{5}\right)^2+\left(y+20\right)^{10}+2022\ge2022\\ A_{min}=2022\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{5}=0\\y+20=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-20\end{matrix}\right.\)

 

30 tháng 9 2021

Thanks bạn haha

12 tháng 10 2021

Bài 1: 

Cả ba cái đều đúng

12 tháng 10 2021

Cảm ơn bạn!

27 tháng 12 2016

x=5 

y=3

4 tháng 1 2017

X=1

Y=-6

x=2

y=3