Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng HĐT \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\) là ra thôi bạn.
a) \(VT=\left(369-219\right)\left(369^2+369.219+219^2\right)\)
\(=150\left(369^2+369.219+219^2\right)\)
Ta chỉ cần chứng minh \(P=369^2+369.219+219^2⋮9\). Đến đây ta lại nhớ tới 1 bổ đề về số chính phương như sau: Nếu một số chính phương mà chia hết cho 3 thì nó cũng chia hết cho 9. Theo bổ đề này và do \(369,219⋮3\) nên dễ dàng suy ra \(P⋮9\). Suy ra đpcm.
Câu b làm tương tự.
\(1997.2003=\left(2000-3\right)\left(2000+3\right)=2000^2-3^2=4000000-9=3999991\)
\(1997\cdot2003=\left(2000-3\right)\left(2000+3\right)=3999991\)
Ta có: \(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)
Lại có:
\(2=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\)
Mà \(a^2+b^2-ab>0\Rightarrow a+b>0\)
\(\Rightarrow2=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right).\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^3\)
\(\Rightarrow\left(a+b\right)^3\le8\Rightarrow a+b\le2\)
a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\)
\(a^2+b^2+c^2-ab-ac-bc=0\)
\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Ta có:
a^2 + b^2 = 2ab
=> a^2 + b^2 - 2ab = 0
(a-b)^2 = 0
=> a=b
TA CŨNG TƯƠNG TỰ GIÁ SỬ PHẢN CHỨNG \(a^2+a+1⋮9\)
=> \(4a^2+4a+4⋮9\)
=> \(4a^2+4a+4⋮3\)
=> \(\left(2a+1\right)^2+3⋮3\)
Mà: \(3⋮3\)
=> \(\left(2a+1\right)^2⋮3\)
=> \(\left(2a+1\right)^2⋮9\) (1)
MÀ: \(\left(2a+1\right)^2+3⋮9\) (2)
TỪ (1) VÀ (2) => \(3⋮9\)
NHƯNG ĐÂY LÀ 1 ĐIỀU RẤT VÔ LÍ
=> ĐIỀU GIẢ SỬ LÀ SAI
=> TA CÓ ĐPCM.
VẬY \(a^2+a+1\) ko chia hết cho 9 \(\forall a\inℤ\)