K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2023

Dùng HĐT \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\) là ra thôi bạn.

a) \(VT=\left(369-219\right)\left(369^2+369.219+219^2\right)\)

\(=150\left(369^2+369.219+219^2\right)\)

 Ta chỉ cần chứng minh \(P=369^2+369.219+219^2⋮9\). Đến đây ta lại nhớ tới 1 bổ đề về số chính phương như sau: Nếu một số chính phương mà chia hết cho 3 thì nó cũng chia hết cho 9. Theo bổ đề này và do \(369,219⋮3\) nên dễ dàng suy ra \(P⋮9\). Suy ra đpcm.

 Câu b làm tương tự.

15 tháng 10 2023

nó làm đúng vì tôi cũng không biết

12 tháng 7 2021

\(1997.2003=\left(2000-3\right)\left(2000+3\right)=2000^2-3^2=4000000-9=3999991\)

\(1997\cdot2003=\left(2000-3\right)\left(2000+3\right)=3999991\)

NV
29 tháng 1 2021

Ta có: \(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)

Lại có:

\(2=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\)

Mà \(a^2+b^2-ab>0\Rightarrow a+b>0\)

\(\Rightarrow2=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right).\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^3\)

\(\Rightarrow\left(a+b\right)^3\le8\Rightarrow a+b\le2\)

7 tháng 7 2019

a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\) 

  \(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\) 

 \(a^2+b^2+c^2-ab-ac-bc=0\) 

\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\) 

 \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\) 

\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\) 

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\) 

\(\Rightarrow a=b=c\left(đpcm\right)\)

3 tháng 11 2016

a^2 + b^2 - 2ab = 0

=> ( a-b)^2=0

=> a-b=0

=> a=b

3 tháng 11 2016

Ta có:

             a^2 + b^2 = 2ab

     =>    a^2 + b^2 - 2ab = 0  

              (a-b)^2  = 0

 =>   a=b

1 tháng 10 2018

đề bài có sai k bn

2 tháng 10 2018

đề đúng rồi bn ơi

15 tháng 8 2020

TA CŨNG TƯƠNG TỰ GIÁ SỬ PHẢN CHỨNG    \(a^2+a+1⋮9\)

=>    \(4a^2+4a+4⋮9\)

=>    \(4a^2+4a+4⋮3\)

=>    \(\left(2a+1\right)^2+3⋮3\)

Mà:    \(3⋮3\)

=>    \(\left(2a+1\right)^2⋮3\)

=>    \(\left(2a+1\right)^2⋮9\)                 (1)

MÀ:    \(\left(2a+1\right)^2+3⋮9\)      (2)

TỪ (1) VÀ  (2) =>    \(3⋮9\)

NHƯNG ĐÂY LÀ 1 ĐIỀU RẤT VÔ LÍ

=> ĐIỀU GIẢ SỬ LÀ SAI

=> TA CÓ ĐPCM.

VẬY    \(a^2+a+1\)     ko chia hết cho 9    \(\forall a\inℤ\)

26 tháng 4 2021

bài sai đề thì phải