Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE và DB=DE
=>AD là trung trực của BE
b: Xét ΔDBF vuông tại B và ΔDEC vuông tại E có
DB=DE
góc BDF=góc EDC
=>ΔDBF=ΔDEC
=>BF=EC và DF=DC
AB+BF=AF
AE+EC=AC
mà AB=AE và BF=EC
nên AF=AC
Xét ΔADF và ΔADC có
AD chung
DF=DC
AF=AC
=>ΔADF=ΔADC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
=>ΔDAF=ΔDEC
=>DF=DC
=>ΔDFC cân tại D
c: Xét ΔBFC có
FE,CAlà đường cao
FE cắt CA tại D
=>D là trực tâm
=>BD vuông góc CF tại H
=>DH vuông góc CF tại H
mà ΔDFC cân tại D
nên H là trung điểm của FC
Xét ΔKFC có
CD là trung tuyến
CI=2/3CD
Do đó: I là trọng tâm
mà H là trung điểm của CF
nên K,I,H thẳng hàng
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a: Xét ΔACD và ΔABE có
\(\dfrac{AC}{AB}=\dfrac{AD}{AE}\left(\dfrac{20}{15}=\dfrac{8}{6}=\dfrac{4}{3}\right)\)
\(\widehat{CAD}\) chung
Do đó: ΔACD~ΔABE
b: Ta có: ΔACD~ΔABE
=>\(\widehat{ACD}=\widehat{ABE}\) và \(\widehat{AEB}=\widehat{ADC}\)
Xét ΔHDB và ΔHEC có
\(\widehat{HBD}=\widehat{HCE}\)
\(\widehat{DHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHDB~ΔHEC
=>\(\dfrac{HD}{HE}=\dfrac{HB}{HC}\)
=>\(HD\cdot HC=HB\cdot HE\)
c: Ta có: AD+DB=AB
=>DB=15-8=7(cm)
Ta có: AE+EC=AC
=>EC+6=20
=>EC=14(cm)
Xét ΔADE và ΔACB có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(\dfrac{8}{20}=\dfrac{6}{15}=\dfrac{2}{5}\right)\)
\(\widehat{A}\) chung
Do đó: ΔADE~ΔACB
=>\(\widehat{ADE}=\widehat{ACB}\)
mà \(\widehat{ADE}=\widehat{FDB}\)
nên \(\widehat{FDB}=\widehat{FCE}\)
Xét ΔFDB và ΔFCE có
\(\widehat{FDB}=\widehat{FCE}\)
\(\widehat{F}\) chung
Do đó: ΔFDB~ΔFCE
=>\(\dfrac{S_{FDB}}{S_{FCE}}=\left(\dfrac{BD}{CE}\right)^2=\dfrac{1}{4}\)
=>\(S_{FCE}=4\cdot S_{FDB}\)
a: Xét ΔMDB và ΔMEF có
MD=ME
góc DMB=góc EMF
MB=MF
=>ΔMDB=ΔMEF
b: ΔMDB=ΔMEF
=>DB=EF
=>EC=EF
=>ΔECF cân tại E
a: Xét ΔMDB và ΔMEF có
MD=ME
góc DMB=góc EMF
MB=MF
=>ΔMDB=ΔMEF
b: ΔMDB=ΔMEF
=>DB=EF
=>EC=EF
=>ΔECF cân tại E
Cm: a) Xét t/giác ABD và t/giác EBD
có: AB = BE (gt)
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BD : chung
=> t/giác ABD = t/giác EBD (c.g.c)
=> DA = DE (2 cạnh t/ứng)
b) Ta có: \(\widehat{BAD}+\widehat{DAF}=180^0\) (kề bù)
\(\widehat{BED}+\widehat{DEC}=180^0\) (kề bù)
Mà \(\widehat{BAD}=\widehat{BED}\)(vì t/giác ABD = t/giác EBD)
=> \(\widehat{DAF}=\widehat{DEC}\)
Xét t/giác ADF và t/giác EDC
có: \(\widehat{ADF}=\widehat{EDC}\)(đối đỉnh)
\(\widehat{DAF}=\widehat{DEC}\)(cmt)
AD = DE (vì t/giác ABD = t/giác EBD)
=> t/giác ADF = t/giác EDC (g.c.g)
c) Ta có: t/giác ADF = t/giác EDC (cmt)
=> AF = EC ; DF = DC (các cặp cạnh tương ứng)
+) DF = DC => t/giác DFC là t/giác cân tại D
Ta lại có: AB + AF = BF
BE + EC = BC
mà AB = BE (gt); AF = EC (cmt)
=> BF = BC
=> t/giác BFC là t/giác cân tại B