K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7

t đang cần gaapppppppps

 

a: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=DB=DC

=>DA=DB

=>ΔDAB cân tại D

b: Xét tứ giác AMDN có \(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

nên AMDN là hình chữ nhật

=>AD=MN

c: Xét ΔABC có

D là trung điểm của BC

DM//AC

Do đó: M là trung điểm của AB

Xét ΔABC có

D là trung điểm của BC

DN//AB

Do đó: N là trung điểm của AC

Xét ΔABC có

D,N lần lượt là trung điểm của CB,CA
=>DN là đường trung bình của ΔABC

=>\(DN=\dfrac{1}{2}AB\)

mà \(BM=\dfrac{1}{2}AB\)

nên DN=BM

Xét tứ giác BMND có

BM//DN

BM=DN

Do đó: BMND là hình bình hành

d: Ta có: BMND là hình bình hành

=>MN=BD

mà BD=DC

nên MN=DC

18 tháng 12 2018

A B C N H M P O

a,b ko khó nên bạn tự giải nha

c)Gọi O la giao điểm của NP và AM

=> O là trung điểm của AM và OM=OA=ON=OP

Xét tam giác AHM vuông tại H

Có O là td của AM (cmt)

=>HO la đường trung tuyến ứng với cạnh huyền AM

=>HO=OA=OM

mà OM=OA=OP=ON (cmt)

=>HO=OP=ON=1/2NP

Xét tam giác NHP

có HO=OP=ON=1/2NP(cmt)

=>tam giác NHP vuông tại H

Xét tứ giác AMDN có

AM//DN

AN//MD

Do đó: AMDN là hình bình hành

mà \(\widehat{MAN}=90^0\)

nên AMDN là hình chữ nhật

mà AM=AN

nên AMDN là hình vuông

Xét tứ giác AMDN có

AM//DN

AN//MD

Do đó: AMDN là hình bình hành

mà \(\widehat{MAN}=90^0\)

nên AMDN là hình chữ nhật

mà AM=AN

nên AMDN là hình vuông

18 tháng 10 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE
b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình

=>DE//BC và DE=1/2BC

=>DE//MC và DE=MC

Xét tứ giác DMCE có

DE//MC

DE=MC

Do đó: DMCE là hình bình hành

c: ΔHAC vuông tại H có HE là trung tuyến

nên \(HE=\dfrac{1}{2}AC\)

mà \(MD=\dfrac{1}{2}AC\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

nên DHME là hình thang

mà HE=MD

nên DHME là hình thang cân

ΔHAB vuông tại H

mà HD là trung tuyến

nên HD=AD

EA=EH

DA=DH

Do đó: ED là đường trung trực của AH

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0