Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
You have to draw the geometry yourself.
\(A_{ABCD}=AB.AD=12.6=72\left(cm^2\right)\)
M is the midpoint of segment BC so we have: \(BM=MC=\frac{BC}{2}=\frac{6}{2}=3\left(cm\right)\)
For the midpoint of CD is N, we also have: \(DN=NC=\frac{CD}{2}=\frac{12}{2}=6\left(cm\right)\)
We have:
\(A_{AMN}=A_{ABCD}-\left(A_{ABM}+A_{NCM}+A_{ADN}\right)\\ =72-\left(\frac{1}{2}.AB.BM+\frac{1}{2}.NC.MC+\frac{1}{2}AD.DN\right)\\ =72-\left(\frac{1}{2}.12.3+\frac{1}{2}.6.3+\frac{1}{2}.6.6\right)\\ =72-45\\ =27\left(cm^2\right)\)
Thusly, the area of triangle AMN in square centimeters is 27.
Dịch: Cho ABCD là HCN có AB = 12cm, AD = 6 cm. M và N lần lượt là trung điểm của các cạnh BC và CD. Tính diện tích tam giác AMN với đơn vị cm2.
SABCD = \(AB\cdot AD=12\cdot6=72\left(cm^2\right)\)
SADN = \(\frac{AD\cdot DN}{2}=\frac{AD\cdot\frac{1}{2}CD}{2}=\frac{AD\cdot\frac{1}{2}AB}{2}=\frac{6\cdot\frac{1}{2}12}{2}=18\left(cm^2\right)\)
SABM = \(\frac{AB\cdot BM}{2}=\frac{AB\cdot\frac{1}{2}BC}{2}=\frac{AB\cdot\frac{1}{2}AD}{2}=\frac{12\cdot\frac{1}{2}6}{2}=18\left(cm^2\right)\)
SMNC = \(\frac{MC\cdot NC}{2}=\frac{\frac{1}{2}BC\cdot\frac{1}{2}CD}{2}=\frac{\frac{1}{2}AD\cdot\frac{1}{2}AB}{2}=\frac{\frac{1}{2}6\cdot\frac{1}{2}12}{2}=9\left(cm^2\right)\)
SABCD = SADN + SABM + SMNC + SAMN
\(\Leftrightarrow\)SAMN = SABCD - SADN - SABM - SMNC
\(\Rightarrow\) SAMN = 72 - 18 - 18 - 9
= 27 (cm2)
2) đặt 3 số có dạng a; a+2, a+4 rồi khai triển ra
số lớn nhất là 22
\(\frac{AC}{BC}=\frac{3}{7}\)
\(\Rightarrow\frac{BC}{AC+BC}=\frac{BC}{AB}=\frac{7}{3+7}=\frac{7}{10}\)
\(\Rightarrow BC=30.\frac{7}{10}=21\left(cm\right)\)
Với những điểm C trên đoạn AB sao cho tỉ số của AC CB là 3 : 7. Tìm chiều dài của BC nếu chiều dài của AB là 30 cm . Trả lời: Chiều dài của BC là ...... cm
Dịch là thế này :
Với những điểm C trên đoạn AB sao cho tỉ số của AC BC là 3: 7. Tìm chiều dài của BC nếu chiều dài của AB là 30 cm.
Trả lời: Chiều dài của BC là ...... cm
Làm :
Dịch :
Với những điểm C trên đoạn AB sao cho tỉ số của AC BC là 3: 7. Tìm chiều dài của BC nếu chiều dài của AB là 30 cm.
Trả lời: Chiều dài của BC là ...... cm
Làm :
\(\frac{AB}{BC}=\frac{3}{7}\)
\(\Rightarrow\frac{BC}{AC+BC}=\frac{BC}{AB}=\frac{7}{3+7}=\frac{7}{10}\)
\(\Rightarrow BC=30.\frac{7}{10}=21\left(cm\right)\)
Đáp số : \(21cm\)
10) Đặt biểu thức là A
\(A=x^2-x+1\)
\(\Leftrightarrow A=x^2-2.x.\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\frac{1}{2}^2+1\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
Vậy điền dấu lớn hơn
9) Đặt biểu thức là B
\(B=-x^2+x-1\)
\(B=-\left(x^2-x+1\right)\)
\(B=-\left(x^2-2.x.\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\right)\)
\(B=-\left(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(B=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)Vậy điền dấu bé