Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
b: \(A=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)
c: Để A=-3 thì x-1=-6
hay x=-5(loại)
Điều kiện:
\(x-1\ne0\Rightarrow x\ne1\)
\(x^3+x\ne0\Leftrightarrow x\ne0\)
\(9x^2-24x+16\\ =\left[\left(3x\right)^2-2.3x.4+4^2\right]=\left(3x-4\right)^2\)
Bài 1: (4n + 3 )2 -25 = ( 4n+ 3 - 5 ) ( 4n + 3 + 5 ) = ( 4n - 2 ) ( 4n + 8 )
=> ( 4n - 2 ) ( 4n + 8 ) chia hết cho 8 với \(\forall n\)
=> (4n+3)2 - 25 chia hết cho 8 với mọi n
Bài 2: (2n + 3)2 - 9 = ( 2n + 3 + 3 ) ( 2n+3-3) = (2n+6) . 2n = 4n2 +6 chia hết cho 4 với \(\forall n\)
Vậy (2n+3)2 - 9 chia hết cho 4 với mọi n
Bài 3: m2 - n2 = ( m - n ) ( m + n )
b) -16 + (x-3)2 = (x-3)2 -16 = ( x - 3 -4 ) ( x-3+4 ) = (x - 7 ) ( x +1 )
Bài 13:
\(1)A=x^2-x+1\\ =\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\\ 2)B=x^2+x+1\\ =\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\\ 3)C=x^2+2x+2\\ =\left(x^2+2x+1\right)+1\\ =\left(x+1\right)^2+1\ge1>0\forall x\)
\(4)A=x^2-5x+10\\ =\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}\right)+\dfrac{15}{4}\\ =\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}>0\forall x\\ 5)B=x^2-8x+20\\ =\left(x^2-8x+16\right)+4\\ =\left(x-4\right)^2+4\ge4>0\forall x\\ 6)C=x^2-8x+17\\ =\left(x^2-8x+16\right)+1\\ =\left(x-4\right)^2+1\ge1>0\forall x\)
\(7)A=x^2-6x+10\\ =\left(x^2-6x+9\right)+1\\ =\left(x-3\right)^2+1\ge1>0\forall x\\ 8)B=9x^2-6x+2\\ =\left(9x^2-6x+1\right)+1\\ =\left(3x-1\right)^2+1\ge1>0\forall x\\ 9)C=2x^2+8x+15\\ =\left(2x^2+8x+8\right)+7\\ =2\left(x^2+4x+4\right)+7\\ =2\left(x+2\right)^2+7\ge7>0\forall x\)