Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: v*t=S
=>v và t tỉ lệ nghịch
c: a*b=S
=>a và b tỉ lệ nghịch
d: N*t=A
=>N và t tỉ lệ nghịch
a: TH1 là tỉ lệ nghịch vì \(1\cdot105=3\cdot35=5\cdot21=7\cdot15\)
a) Ta có: MN⊥d, EF⊥d
=> MN//EF(từ vuông góc đến song song)
b) Ta có: \(\widehat{MPQ}=180^0-\widehat{MPb}=180^0-55^0=125^0\)(kề bù)
\(\Rightarrow\widehat{MPQ}=\widehat{NMc}=125^0\)
Mà 2 góc này đồng vị
=> PQ//MN
Mà MN//EF
=> PQ//EF
Cảm ơn bạn. Bạn có thể giúp mình làm nốt câu c được không?
1: \(A=-\dfrac{1}{3}\cdot3\cdot x\cdot x^3\cdot y\cdot z^2=-x^4yz^2\)
2: \(A=-1^4\cdot\left(-1\right)\cdot2^2=4\)
Giúp mình với bài 1,2,3,4nhé. Kí hiệu [x] là số nguyên lớn nhất không vượt quá x nhé. Mình cảm ơn ơn
`a,`
`P(x)=x^2-5+x^4-4x^3-x^6`
`P(x)= -x^6+x^4-4x^3+x^2-5`
`Q(x)=2x^5-x^4+x^2-x^3+x-1`
`Q(x)=2x^5-x^4-x^3+x^2+x-1`
`b,`
`P(x)+Q(x)=(-x^6+x^4-4x^3+x^2-5)+(2x^5-x^4-x^3+x^2+x-1)`
`= -x^6+x^4-4x^3+x^2-5+2x^5-x^4-x^3+x^2+x-1`
`= -x^6+2x^5+(x^4-x^4)+(-4x^3-x^3)+(x^2+x^2)+x+(-5-1)`
`= -x^6+2x^5-5x^3+2x^2+x-6`
`c,`
`P(x)-Q(x)=(-x^6+x^4-4x^3+x^2-5)-(2x^5-x^4-x^3+x^2+x-1)`
`= -x^6+x^4-4x^3+x^2-5-2x^5+x^4+x^3-x^2-x+1`
`= -x^6-2x^5+(x^4+x^4)+(-4x^3+x^3)+(x^2-x^2)+x+(-5+1)`
`= -x^6-2x^5+2x^4-3x^3+x-4`
Ote.
Phần trừ đa thức một biến, bạn phải chú ý trước có dấu trừ, bạn ngoặc vào nhé! Còn trước dấu ngoặc có dấu trừ, đổi dấu. Khi gộp và rút gọn các đa thức cùng bậc, chú ý trước dấu ngoặc nên để dấu cộng, khi gộp vào phải đưa nguyên dấu của hạng tử, không được tự tiện đổi. Những cái này là phải nhớ nhé!
Bài 3:
a) Ta có: \(A-\left(9x^3+8x^2-2x-7\right)=-9x^3-8x^2+5x+11\)
\(\Leftrightarrow A=-9x^3-8x^2+5x+11+9x^3+8x^2-2x-7\)
\(\Leftrightarrow A=3x+4\)
b) Đặt A(x)=0
nên 3x+4=0
hay \(x=-\dfrac{4}{3}\)
Bạn có biết giải bài hình k giúp mình với 21:00 mình phải nộp rồi
6B:
a: Các cặp góc đối đỉnh là: \(\widehat{cMb};\widehat{aMd}\); \(\widehat{aMc};\widehat{bMd}\)
b:
Cách 1: \(\widehat{aMc}+\widehat{cMb}=180^0\)(hai góc kề bù)
=>\(\widehat{aMc}=180^0-50^0=130^0\)
Ta có: \(\widehat{aMc}+\widehat{aMd}=180^0\)(hai góc kề bù)
=>\(\widehat{aMd}=180^0-130^0=50^0\)
Cách 2:
Ta có: \(\widehat{aMd}=\widehat{cMb}\)(hai góc đối đỉnh)
mà \(\widehat{cMb}=50^0\)
nên \(\widehat{aMd}=50^0\)
Ta có: \(\widehat{aMd}+\widehat{aMc}=180^0\)(hai góc kề bù)
=>\(\widehat{aMc}+50^0=180^0\)
=>\(\widehat{aMc}=130^0\)
7A:
a: Oz là phân giác của góc xOy
=>\(\widehat{xOz}=\widehat{zOy}=\dfrac{\widehat{xOy}}{2}=35^0\)
b: Ta có: \(\widehat{xOy}+\widehat{xOt}=180^0\)(hai góc kề bù)
=>\(\widehat{xOt}+70^0=180^0\)
=>\(\widehat{xOt}=110^0\)
Ta có: \(\widehat{zOt}+\widehat{zOy}=180^0\)(hai góc kề bù)
=>\(\widehat{zOt}+35^0=180^0\)
=>\(\widehat{zOt}=145^0\)