K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Câu này dễ mak

Ta có tam giác vuông có 3 cạnh b,c,a với h là đường cao ứng với cạnh huyền a, ta có

+) b^2 + c^2 = a^2 (Định lí Pi-ta-go)

+) ah = bc(Hệ thức lượng)

Ta có:

+) (b + c)^2 + h^2 = b^2 + 2bc + c^2 + h^2 = a^2 + 2ah + h^2

+) (a + h)^2 = a^2 + 2ah + h^2

Từ đây suy ra: (b + c)^2 + h^2 = (a + h)^2

=> Tam giác có 3 cạnh là b + c; a+ h và h là tam giác vuông (Định lí Py-ta-go đảo)

15 tháng 8 2017

Ký hiệu: 

AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có

Xét hai t/g vuông AHC và ABC có

\(\widehat{C}\)chung

\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))

=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)

Xét t/g vuông ABC có

\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)

\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)

\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)

\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)

=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h

15 tháng 8 2017

Sorry!!!

Phần ký hiệu sửa thành 

Đường cao AH=h

Bài 2: 

Gọi tam giác vuông đo là ΔABC vuông tại A có AH là đường cao 

Theo đề, ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{49}\)

\(\Leftrightarrow HB=\dfrac{9}{49}HC\)

Ta có: \(HB\cdot HC=AH^2\)

\(\Leftrightarrow HC^2=42^2:\dfrac{9}{49}=9604\)

\(\Leftrightarrow HC=98\left(cm\right)\)

\(\Leftrightarrow HB=42cm\)

9 tháng 9 2016

Bài 1:

3 4 x y z

Áp dụng đl pytago ta có:

\(\left(y+z\right)^2=3^2+4^2=9+16=25\)

=> y + z = 5

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

\(3^2=y\left(y+z\right)=5y\)

=>\(y=\frac{3^2}{5}=1,8\)

Có: y + z =5

=>z=5-y=5-1,8=3,2

Áp dụng hên thức liên quan tới đường cao:

\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)

=>\(x=\frac{12}{5}\)

2 tháng 9 2019

Bài 2:

B A C H 1cm 2cm x y

Ta có: △ABC vuông tại A và có đg cao AH

AB2 = BH.BC ( hệ thức lượng )

⇒ x2 = 1 . 3

⇒ x = \(\sqrt{1.3}=\sqrt{3}cm\)

AC2 = CH.BC

⇒ y2 = 2 . 3

⇒ y = \(\sqrt{6}\) cm

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5