K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

nên AIHK là hình chữ nhật

Kẻ Ax là tiếp tuyến của (O) tại A

=>OA\(\perp\)Ax tại A

Xét ΔAHC vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(1\right)\)

Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AI\cdot AB=AK\cdot AC\)

=>\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)

Xét ΔAIK và ΔACB có

\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)

\(\widehat{IAK}\) chung

Do đó: ΔAIK~ΔACB

=>\(\widehat{AKI}=\widehat{ABC}\)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

=>\(\widehat{xAC}=\widehat{AKI}\)

mà hai góc này là hai góc ở vị trí so le trong

nên IK//Ax

=>OA\(\perp\)IK

 

b: ΔOMN cân tại O

mà OA là đường cao

nên OA là đường trung trực của MN

=>AM=AN

=>\(\widehat{AMN}=\widehat{ANM}\)

=>\(sđ\stackrel\frown{AM}=sđ\stackrel\frown{AN}\)

Xét (O) có

\(\widehat{AMN}\) là góc nội tiếp chắn cung AN

\(\widehat{ABM}\) là góc nội tiếp chắn cung AM

\(sđ\stackrel\frown{AM}=sđ\stackrel\frown{AN}\)

Do đó: \(\widehat{AMN}=\widehat{ABM}\)

Xét ΔAMI và ΔABM có

\(\widehat{AMI}=\widehat{ABM}\)

\(\widehat{MAI}\) chung

Do đó: ΔAMI~ΔABM

=>\(\dfrac{AM}{AB}=\dfrac{AI}{AM}\)

=>\(AM^2=AI\cdot AB\)

=>AM=AH

=>ΔAMH cân tạiA

(hình bạn tự vẽ nhá :v )

a) Có  goc BAC=90độ=>góc EAF=90độ

HE vuong goc voi AB =>góc HEA=90độ

HF vuong goc voi AC=>góc HFA=90độ

==>AEHF là hình chữ nhật

Có góc ABC=góc EHA

mà góc EHA= góc EFA

      góc ABC+OAC=90 độ 

=>góc OAC+góc AFE=90 độ =>OA vuông góc với EF

b)có góc PBA=góc PFA

 góc APC=góc ABC

mà góc ABC= góc AFP

=>goca PBA= góc APE=>tam giác AEP đồng dạng vs APB (gg)

=>AP^2=AE.AB

mà AH^2=AE.AB

=>tam giac PAH cân

c)

Chứng minh tam giác DKC đồng dạng với tam giác DBA (g-g) , Suy ra DK.DA=DC.DB (1)

Chứng minh Tứ giác BEFC nội tiếp ( góc AEF = góc FCH cùng bắng với góc AHF )

Từ đó chứng minh hai tam giác DFC và DBE đồng dạng (g-g), Suy ra DF.DE=DC.DB (2)

Từ (1) và (2) suy ra DK.DA = DF.DE. Từ đó chứng minh tam giác DKF đồng dạng với DEA (theo trường hợp c-g-c)

Suy ra góc DKF = góc DEA

Suy ra tứ giác AEFK nội tiếp

d) chứng minh được OA vuông góc với PQ.
Suy ra cung AP=cung AQ. suy ra ˆADP=ˆACKADP^=ACK^
=> KFCD nội tiếp => ΔIFC∼ΔIDKΔIFC∼ΔIDK
=> IC.ID=IF.IK.  rồi cm IH^2=IF.IK dựa vào tứ giác AKFH nội tiếp do tứ giác AEFK nội tiếp

18 tháng 4 2019

a) Có  goc BAC=90độ=>góc EAF=90độ

HE vuong goc voi AB =>góc HEA=90độ

HF vuong goc voi AC=>góc HFA=90độ

==>AEHF là hình chữ nhật

Có góc ABC=góc EHA

mà góc EHA= góc EFA

      góc ABC+OAC=90 độ 

=>góc OAC+góc AFE=90 độ =>OA vuông góc với EF

b)có góc PBA=góc PFA

 góc APC=góc ABC

mà góc ABC= góc AFP

=>goca PBA= góc APE=>tam giác AEP đồng dạng vs APB (gg)

=>AP^2=AE.AB

mà AH^2=AE.AB

=>tam giac PAH cân

c)

Chứng minh tam giác DKC đồng dạng với tam giác DBA (g-g) , Suy ra DK.DA=DC.DB (1)

Chứng minh Tứ giác BEFC nội tiếp ( góc AEF = góc FCH cùng bắng với góc AHF )

Từ đó chứng minh hai tam giác DFC và DBE đồng dạng (g-g), Suy ra DF.DE=DC.DB (2)

Từ (1) và (2) suy ra DK.DA = DF.DE. Từ đó chứng minh tam giác DKF đồng dạng với DEA (theo trường hợp c-g-c)

Suy ra góc DKF = góc DEA

Suy ra tứ giác AEFK nội tiếp

d) chứng minh được OA vuông góc với PQ.
Suy ra cung AP=cung AQ. suy ra ˆADP=ˆACKADP^=ACK^
=> KFCD nội tiếp => ΔIFC∼ΔIDKΔIFC∼ΔIDK
=> IC.ID=IF.IK.  rồi cm IH^2=IF.IK dựa vào tứ giác AKFH nội tiếp do tứ giác AEFK nội tiếp

a: góc AIH=góc AKH=góc KAI=90 độ

=>AIHK là hình chữ nhật

góc AKI+góc OAK

=góc AHI+góc OCA

=góc OBA+góc OCA=90 độ

=>AO vuông góc IK

b: Xét ΔAMB và ΔAIM có

góc ABM=góc AMI

góc MAB chung

=>ΔAMB đồng dạng với ΔAIM

=>AM/AI=AB/AM

=>AM^2=AI*AB

=>AM=AH

=>ΔAMH cân tại A

15 tháng 11 2023

 Gọi T là giao điểm của CD và AB. Khi đó xét tứ giác ACHT, ta có:

O (trung điểm AC), D (giao điểm của 2 đường chéo) và B (giao điểm của 2 đường thẳng chứa 2 cạnh đối) thẳng hàng nên ACHT là hình thang. (bổ đề hình thang quen thuộc)

 \(\Rightarrow\) HT//AC \(\Rightarrow\) H, K, T thẳng hàng.

 Lại có \(\widehat{CEH}=\widehat{CAH}\) (góc nội tiếp cùng chắn cung AH)

 Mà \(\widehat{CAH}=\widehat{B}\) (cùng phụ với góc C)

 \(\Rightarrow\widehat{CEH}=\widehat{B}\)

 \(\Rightarrow\) Tứ giác BTEH nội tiếp \(\Rightarrow\widehat{BEH}=\widehat{BTH}\)

Mà \(\widehat{BTH}=90^o\) nên \(\widehat{BEH}=90^o\). Ta có đpcm.

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0