Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)
\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{1}{2}\Rightarrow A=60^0\)
\(\Rightarrow C=180^0-\left(A+B\right)=75^0\)
\(h_a=\frac{bc.sinA}{a}=\frac{2.\left(\sqrt{3}+1\right)sin60^0}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{2}}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=t\sqrt{3}\\b=t\sqrt{2}\\c=\frac{t\left(\sqrt{6}-\sqrt{2}\right)}{2}\end{matrix}\right.\)
\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{2t^2+\left(2-\sqrt{3}\right)t^2-3t^2}{t^2.\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}=-\frac{1}{2}\)
\(\Rightarrow A=120^0\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)
\(\Rightarrow C=180^0-\left(A+B\right)=15^0\)
\(R=\frac{a}{2sinA}=\frac{2\sqrt{3}}{2sin120^0}=2\)
1.
Gọi $L$ là giao $BM, CN$ thì $L$ là trọng tâm tam giác $ABC$.
Áp dụng công thức đường trung tuyến:
$BM^2=\frac{c^2+a^2}{2}-\frac{b^2}{4}$
$CN^2=\frac{a^2+b^2}{2}-\frac{c^2}{4}$$BL^2=\frac{4}{9}BM^2=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2$
$NL^2=\frac{1}{9}CN^2=\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$
Theo cong thức Pitago:
$BN^2=BL^2+NL^2$
$\Rightarrow \frac{c^2}{4}=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2+\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$
$\Rightarrow $5a^2=b^2+c^2$ hay $b^2+c^2=45$
Áp dụng công thức cos:
$a^2=b^2+c^2-2bc\cos A=b^2+c^2-\sqrt{3}bc$
$\Rightarrow 9=45-\sqrt{3}bc\Rightarrow bc=12\sqrt{3}$
$S_{ABC}=\frac{1}{2}bc\sin A=\frac{1}{2}.12\sqrt{3}.\sin 30=3\sqrt{3}$
Đáp án A.
$b=
2.
\(R_{ABC}=\frac{abc}{4S_{ABC}}=\frac{3bc}{4S}=\frac{3.12\sqrt{3}}{4.3\sqrt{3}}=3\)
Đáp án B.
\(cosA=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{a^2+b^2+a^2+c^2-b^2-c^2}{2AB.AC}=\frac{a^2}{AB.AC}>0\)
\(\Rightarrow A< 90^0\)
Tương tự ta có: \(cosB=\frac{b^2}{AB.BC}>0\Rightarrow B< 90^0\)
\(cosC=\frac{c^2}{AC.BC}>0\Rightarrow C< 90^0\)
\(\Rightarrow\Delta ABC\) là tam giác nhọn
b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{2}+2}-\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|-\left|\sqrt{5}+\sqrt{2}\right|\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\) (vì \(\sqrt{5}\ge\sqrt{2}\)
=0
c) \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+\sqrt{3+1}\) (vì \(\sqrt{3}\ge1\))
\(=2\sqrt{3}\)
a)\(\sqrt{5+2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}-\sqrt{3-2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\) (vì \(\sqrt{3}\ge\sqrt{2}\))
=0
\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{1}{2}\Rightarrow A=60^0\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)
\(\Rightarrow C=180^0-\left(A+B\right)=75^0\)
\(sinA=sin60^0=\frac{\sqrt{3}}{2}\)
\(\Rightarrow h_a=\frac{bc.sinA}{a}=\sqrt{3}+1\)