K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại Ha) Chứng minh rằng H làtrung điểm của đoaṇ thẳng BCb) Tính độ dài đoạn thẳng AHc) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ làtrung điểmcủa HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?d) Chứng minh AH là đường trung trực của đoạn thẳng DE .e) Tìm điều kiện của tam giác...
Đọc tiếp

 

Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là

trung điểm của đoaṇ thẳng BC

b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là

trung điểm

của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE

Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh rằng H là

trung điểm của đoaṇ thẳng BC

b) Tính độ dài đoạn thẳng AH
c) Kẻ HI AB taị I và HK  AC taị K. Vẽ các điểm D và E sao cho I ,K lần lươṭ là

trung điểm

của HD và HE. Chứng minh AE = AH . Tam giác ADE là tam giác gì? Vì sao?
d) Chứng minh AH là đường trung trực của đoạn thẳng DE .
e) Tìm điều kiện của tam giác ABC để A là trung điểm của DE

0
25 tháng 6 2019

A B C H D E 1 2 1 1

Cm: Xét t/giác ABH và t/giác ACH

có : AB = AC (gt)

   \(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)

      AH : chung

=> t/giác ABC = t/giác ACH (ch - cgv)

=> BH = HC (2 cạnh t/ứng )     => AH là đường cao của t/giác ABC

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng) => AH là đường p/giác của t/giác ABC

Ta có: BH = HC (cmt)

  \(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)

=> AH là đừng trung trực của t/giác ABC

b) Ta có: BH = HC = 1/2. BC = 1/2 . 8 = 4 (cm)

Áp dụng t/c của dãy tỉ số bằng nhau vào t/giác ABH vuông tại H , ta có:

 AB2 = AH2 + BH2 

=> AH2 = AB2 - BH2 = 52 - 42 = 25 - 16 = 9

=> AH = 3 

Vậy AH = 3 cm

c) Xét t/giác ADH và t/giác AEH

có : \(\widehat{ADH}=\widehat{AEH}=90^0\) (gt)

    AH : chung

     \(\widehat{A_1}=\widehat{A_2}\) (gt)

=> t/giác ADH = t/giác AEH (ch - gn)

=> AD = AE (2 cạnh t/ứng)

=> t/giác ADE cân tại A

=> \(\widehat{D_1}=\widehat{E_1_{ }}=\frac{180^0-\widehat{A}}{2}\) (1)

Ta có: AB = AC (gt) 

=> t/giá ABC cân tại A

=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => \(\widehat{D_1}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị 

=> DE // BC (Đpcm)

6 tháng 4 2020

Xét hai tam giác vuông ΔABH ΔABH và ΔACH ΔACH:

Ta có: AH cạnh chung

AB=AC

Vậy ΔABH ΔABH = ΔACH ΔACH (c.g.c)

AH là đường cao đồng thời đường trung tuyến của ΔABC ΔABC cân tại A (AB=AC)

Vậy HC= HB hay H là trung điểm BC

2. BH = HC = BC2= 122 = 6BC2 = 122 = 6 cm

Áp dụng định lí Py-ta-go:

AH = √AB2 − HB2= √102 − 62 = 8AH = AB2− HB2 = 102− 62 = 8 cm

3. Ta có: AK là đường cao ΔAEH ΔAEH

Mà KE = KH nên AK cũng là đường trung tuyến ΔAEH ΔAEH 

Vậy ΔAEH ΔAEH cân tại A

Nên AE=AH  (1)

4. Ta có: AI là đường cao ΔADH ΔADH

Mà IH = ID nên AI cũng là đường trung tuyến ΔADH ΔADH 

Vậy ΔAEH ΔAEH cân tại A
Nên AD = AH (2)

Từ (1)(2) Suy ra: AE=AD hay ΔAED ΔAED cân tại A

5. Xét ΔAEF ΔAEF và ΔADF ΔADF:

Ta có: AF cạnh chung

AE=AD

\(\widehat{AEF}\)=\(\widehat{ADF}\) \(\widehat{AEF}\)=\(\widehat{ADF}\)

Vậy ΔAEFΔAEF =ΔADFΔADF (c.g.c)

Nên EF = FD; AF là đường trung tuyến ΔAED ΔAED cân nên đồng thời đường cao nên AF vuông góc ΔAED ΔAED (3)

AF vuông góc BC (4)

Từ (3)(4) Suy ra: DE//BC

6. Để A là trung điểm ED thì ΔABC ΔABC vuông cân tại A

Giả sử ΔABC ΔABC vuông cân tại A nên AH=HB (đường cao đồng thời trung tuyến) IA=IB (đường cao đồng thời trung tuyến)

Tứ giác ADBH có hai đường chéo cắt nhau tại trung điểm mổi đường nên ADBH là hình bình hành

CM tương tự cho tứ giác AECH 

Mà C,H,B thẳng hàng và HC=HB  nên E,A,D thẳng  hàng và  A là trung điểm ED

6 tháng 4 2020

Hình đó nha bn ^^

#hoc_tot#

:>>>

26 tháng 2 2019

a: Ta có: AH⊥BC

nên \(\widehat{AHB}=\widehat{AHC}=90^0\)

b: BH=CH=BC/2=4cm

=>AH=3cm

c: Xét ΔABM có 

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABM cân tại B

d: Xét tứ giác ABMC có 

H là trung điểm của AM

H là trung điểm của BC

Do đó: ABMC là hình bình hành

Suy ra: BM//AC

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(Hai góc tương ứng)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

c: BH=CH=3cm

AH=căn 5^2-3^2=4cm

a)

*Tính BC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

a) 

*Tính BE

Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: BA=BE(hai cạnh tương ứng)

mà BA=6cm(gt)

nên BE=6cm

Vậy: BE=6cm