K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10

4\(x^2\) + 2y2 + 2y - 4\(xy\) + 5 = 0

(4\(x^2\) - 4\(xy\) + y2) + (y2 + 2y + 1) + 5 = 0

(2\(x\) - y)2 + (y + 1)2 + 5 = 0

(2\(x-y\))2 ≥ 0;  (y + 1)2 ≥ 0 ∀ \(x\);y vậy

(2\(x-y\))2 + (y + 1)2 + 5 ≥ 5 > 0∀\(x;y\) 

Kết luận: Không tồn tại \(x;y\) thỏa mãn

4\(x^2\) + 2y2 + 2y - 4\(xy\) + 5 = 0 

6 tháng 10

`4x^2 + 2y^2 + 2y - 4xy + 5 = 0`

`<=> 4x^2 - 4xy + y^2 + y^2 + 2y + 1 + 4 = 0`

`<=> (4x^2 - 4xy + y^2) + (y^2 + 2y + 1 ) + 4 = 0`

`<=> (2x - y)^2 +(y+1)^2 + 4 = 0`

Mà  `(2x - y)^2 +(y+1)^2 >=0 `

`=> (2x - y)^2 +(y+1)^2 + 4 >= 4 > 0 `

Vậy không tồn tại x;y thỏa mãn

25 tháng 12 2015

\(x^2+2y^2-2xy+x-2y+1=0\)

\(4x^2+8y^2-8xy+4x-8y+4=0\)

\(4x^2-4x\left(2y-1\right)+\left(2y-1\right)^2+8y^2-8y+4-\left(2y-1\right)^2=0\)

\(\left(2x-2y+1\right)^2+\left(4y^2-4y+1\right)+3=0\)

\(\left(2x-2y+1\right)^2+\left(2y-1\right)^2+3=0\) ( vô lí)

=> KL...........

22 tháng 12 2016

vô lí

15 tháng 9 2020

a) 5x2 + 10y2 - 6xy - 4x - 2y + 3 

= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1

= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y, z

=> đpcm 

b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 

= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1

= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x, y, z

=> đpcm

3 tháng 10 2020

a) 5x2 + 10y2 - 6xy - 4x - 2y + 3 

= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1

= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1

Ta có : \(\hept{\begin{cases}\left(x-3y\right)^2\\\left(2x-1\right)^2\\\left(y-1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)

=> đpcm

b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 = 0 < Sửa -z2 -> +z2 )

= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1

= ( x - 1 )2 + 4( y2 + 2y + 1 ) + ( z - 3 )2 + 1

= ( x - 1 )2 + 4( y + 1 )2 + ( z - 3 )2 + 1

Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\4\left(y+1\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\forall x,y,z\)

=> đpcm

29 tháng 5 2016

5x^2+2y^2+4xy-4x-y+5=(4x^2+y^2+4xy)+(x^2-4x+4)+(y^2-y+1/4)+3/4 =(2x+y)^2+(x-2)^2+(y-1/2)^2+3/4  (1)

 vi (2x+y)^2>=0 , (x-2)^2>=0  ,(y-1/2)^2>=0 (2)

tu 1 va 2 suy ra dieu phai chung minh

29 tháng 5 2016

(x+y)^2+(x+2)^2-(-x-y)^2+x^2+y^2+1>=0

9 tháng 8 2023

a)\(2x^2+3x+5=0\)

\(\Leftrightarrow4x^2+6x+10=0\)

\(\Leftrightarrow\left(2x\right)^2+2.2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}=0\)

\(\Leftrightarrow\left(2x+\dfrac{3}{2}\right)^2=-\dfrac{31}{4}\left(vn\right)\)

b) PT \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=-1\left(vn\right)\) ( do \(VT\ge0\forall x,y\) )

c) PT \(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2+2x-6y+10=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1+y^2-4y+4+5=0\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=-5\left(vn\right)\)

Vậy PT vô nghiệm

a: 2x^2+3x+5=0

=>x^2+3/2x+5/2=0

=>x^2+2*x*3/4+9/16+31/16=0

=>(x+3/4)^2+31/16=0(vô lý)

b: x^2-2x+y^2-4y+6=0

=>x^2-2x+1+y^2-4y+4+1=0

=>(x-1)^2+(y-2)^2+1=0(vô lý)