K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 1

a.

Do M là trung điểm BH, I là trung điểm AH

\(\Rightarrow IM\) là đường trung bình tam giác ABH

\(\Rightarrow IM||AB\Rightarrow ABMI\) là hình thang

b.

Cũng do IM là đường trung bình tam giác ABH \(\Rightarrow IM=\dfrac{1}{2}AB\)

Mà E là trung điểm CD \(\Rightarrow CE=\dfrac{1}{2}CD\)

Do ABCD là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AB=CD\\AB||CD\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}IM=CE\\IM||CD\end{matrix}\right.\) \(\Rightarrow IMCE\) là hình bình hành

c.

Do \(\left\{{}\begin{matrix}IM||AB\left(cmt\right)\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow IM\perp BC\)

Lại có \(BH\perp AC\Rightarrow BH\perp IC\)

\(\Rightarrow M\) là giao điểm 2 đường cao của tam giác IBC

\(\Rightarrow M\) là trực tâm tam giác ABC

\(\Rightarrow CM\) là đường cao thứ 3 hay \(CM\perp IB\)

Lại có \(CM||IE\) (do IMCE là hbh)

\(\Rightarrow IE\perp IB\Rightarrow\Delta IBE\) vuông tại I

\(\Rightarrow IG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow IG=\dfrac{1}{2}BE\) 

\(\Delta BCE\) vuông tại C có \(CG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow CG=\dfrac{1}{2}BE\)

\(\Rightarrow CG=IG\) hay tam giác ICG cân tại G

NV
4 tháng 1

d.

Từ K hạ \(KF\) vuông góc đường thẳng CD (F thuộc đường thẳng CD)

\(\Rightarrow KF||BC\) (cùng vuông góc CD)

\(\Rightarrow\widehat{BKF}=\widehat{HBC}\) (đồng vị) (1)

Lại có \(\widehat{HBC}=\widehat{BAC}\) (cùng phụ \(\widehat{ACB}\)) (2)

\(\widehat{BAC}=\widehat{CDB}\) (tính chất hình chữ nhật) (3)

Từ (1);(2);(3) \(\Rightarrow\widehat{BKF}=\widehat{CDB}\) (4)

Mà \(\left\{{}\begin{matrix}BK=AC\left(gt\right)\\AC=BD\left(\text{hai đường chéo hcn}\right)\end{matrix}\right.\) 

\(\Rightarrow BK=BD\Rightarrow\Delta BDK\) cân tại B

\(\Rightarrow\widehat{BKD}=\widehat{BDK}\) (5)

(4);(5) \(\Rightarrow\widehat{BKF}+\widehat{BKD}=\widehat{CDB}+\widehat{BDK}\)

\(\Rightarrow\widehat{FKD}=\widehat{FDK}\)

\(\Rightarrow\Delta DKF\) vuông cân tại F

\(\Rightarrow\widehat{FDK}=45^0\) hay \(\widehat{KDC}=45^0\)

27 tháng 10 2021

a: Xét ΔHAB có 

N là trung điểm của HB

M là trung điểm của HA

Do đó: NM là đường trung bình của ΔAHB

Suy ra: \(NM=\dfrac{AB}{2}=2\left(cm\right)\)

10 tháng 1 2022

a) Xét tam giác AHB có:

M,N lần lượt là trung điểm các đoạn thẳng AH,BH (gt).

\(\Rightarrow\) MN là đường trung bình.

\(\Rightarrow\) MN // AB (Tính chất đường trung bình trong tam giác).

b) Xét tam giác AHB có: MN là đường trung bình (cmt).

\(\Rightarrow\) MN = \(\dfrac{1}{2}\) AB (Tính chất đường trung bình trong tam giác).

Mà AB = CD (ABCD là hình chữ nhật).

\(\Rightarrow\) MN = \(\dfrac{1}{2}\) AB = \(\dfrac{1}{2}\) CD.

Vì ABCD là hình chữ nhật (gt). \(\Rightarrow\) AB // CD (Tính chất hình chữ nhật).

Mà MN // AB (cmt).

\(\Rightarrow\) MN // AB // CD.

Xét tứ giác MNED:

+ MN // DE (MN // CD).

+ MN = DE (cùng = \(\dfrac{1}{2}\) CD).

\(\Rightarrow\) Tứ giác MNED là hình bình hành (dhnb).

7 tháng 8 2023

dung ko

 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó:MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay BMNC là hình thang

5 tháng 11 2021

cho thêm câu c

 

13 tháng 11 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

Xét ΔABH có

M là trung điểm của AB

MI//BH

Do đó: I là trung điểm của AH

13 tháng 11 2021

Cảm ơn bạn

 

16 tháng 10 2019

a) E là điểm đối xứng của điểm A qua điểm D Þ A, D, E thẳng hàng và DA = DE Þ CD ^ AE tại trung điểm của AE Þ CA = CE Þ DCAE cân ở C.

Þ D A C ^  = 450 Þ DACE vuông cân.

b) Áp dụng tính chất đường trung bình cho DHAE và giả thiết ABCD là hình vuông ta sẽ chứng minh được tứ giác BMNC là hình bình hành.

c) Do AH ^ BN,   mà NM//CB Þ NM ^ AB nên M là trực tâm của tam giác ANB.

d) M là trực tâm DABN nên BM ^ AN mà BM//CN Þ  A N C ^ = 900