Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-y\right):\left(x+y\right):xy=1:7:24\)
\(\Rightarrow\frac{x-y}{1}=\frac{x+y}{7}=\frac{xy}{24}\) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau đốt với hai tỉ số đầu ta có:
\(\frac{x-y}{1}=\frac{x+y}{7}=\frac{x-y+x+y}{1+7}=\frac{2x}{8}=\frac{x}{4}\)
Do đó \(\frac{x}{4}=\frac{xy}{24}\Rightarrow\frac{x}{xy}=\frac{4}{24}\Rightarrow\frac{1}{y}=\frac{1}{6}\Rightarrow y=6\)
Thay y = 6 vào (1) ta có:
\(\frac{x-6}{1}=\frac{x+6}{7}\)
=> 7(x - 6) = x + 6
=> 7x - 42 = x + 6
=> 7x - x = 6 + 42
=> 6x = 48
=> x = 8
Vậy x = 8, y = 6
Ta có: \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Từ: \(x-y-z=0\Rightarrow x-z=y;y-x=-z\) và \(y+z=x\)
Suy ra: \(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\left(x;y;z\ne0\right)\)
Ta có: \(x-y-z=0\Rightarrow x-z=y,z-y=x,y-x=-z\)
\(B=\left(1-\frac{z}{x}\right)\cdot\left(1-\frac{x}{y}\right)\cdot\left(1-\frac{y}{z}\right)\)
\(\Rightarrow B=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{z-y}{z}=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=\frac{-xyz}{xyz}=-1\)
x - y - z = 0
=> x = y + z
y = x - z
-z = x - y
Thay vào B ta được :
\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1-\frac{y}{z}\right)\)
\(=\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1-\frac{x-z}{z}\right)\)
\(=\left(\frac{-y}{x}\right)\left(\frac{z}{y}\right)\left(\frac{-x}{z}\right)\)
\(=\frac{-yz\left(-x\right)}{xyz}\)
\(=\frac{xyz}{xyz}=1\)
Mình k dám chắc nhá
\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)
\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)
\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)
\(A=2x^4y^4z^2\)
\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)
\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)
\(B=8x^7y^{y^8}z^6\)
Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)
a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)
a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)
Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x
\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z
\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y
\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z
Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
câu b cách làm giống như câu a
Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)
Tương tự:
\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)
\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)
\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)
\(f\left(x_1\right)=ax_1\) ; \(f\left(x_2\right)=ax_2\) ; \(f\left(x_1x_2\right)=ax_1x_2\)
Để \(f\left(x_1\right)f\left(x_2\right)=f\left(x_1x_2\right)\)
\(\Leftrightarrow ax_1.ax_2=ax_1x_2\)
\(\Leftrightarrow a^2x_1x_2=ax_1x_2\)
\(\Leftrightarrow a^2=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)
Vậy \(a=1\)
Ta có:
\(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(9+y\right)=3:1:2:5\)
\(\Rightarrow\dfrac{x+y}{3}=\dfrac{5-z}{1}=\dfrac{y+z}{2}=\dfrac{9+y}{5}\)
Đặt \(\dfrac{x+y}{3}=\dfrac{5-z}{1}=\dfrac{y+z}{2}=\dfrac{9+y}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=3k\\5-z=k\\y+z=2k\\9+y=5k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3k-y\left(1\right)\\z=5-k\left(2\right)\\z=2k-y\left(3\right)\\y=5k-9\left(4\right)\end{matrix}\right.\)
Từ (3) và (4)
\(\Rightarrow z=2k-\left(5k-9\right)\)
\(\Rightarrow z=2k-5k+9\left(5\right)\)
Từ (2) và (5)
\(\Rightarrow z=2k-5k+9=5-k\)
\(\Rightarrow2k-5k+9-5+k=0\)
\(\Rightarrow2k-5k+k+\left(9-5\right)=0\)
\(\Rightarrow\left(-2\right)k+4=0\)
\(\Rightarrow\left(-2\right)k=-4\)
\(\Rightarrow k=2\left(6\right)\)
Từ (2) và (6)
\(\Rightarrow z=5-2=3\)
Từ (4) và (6)
\(\Rightarrow y=5.2-9=1\)
Từ (1) và (6)
\(\Rightarrow x=3.2-1=5\)
Vậy \(x=5;y=1;z=3\)
Vì đây là lần đầu tiên mình làm bài này nên chỗ nào trình bày chưa được mong bạn sửa giúp ạ!
- Từ đề bài
=>\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)
- Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)\(=\dfrac{x-y-x+y+xy}{1-7+24}=\dfrac{\left(x-x\right)+\left(-y+y\right)+xy}{18}=\dfrac{xy}{18}\)
=> xy \(\in\) bội chung của 18.
- Vậy xy \(\in\) bội chung của 18.
( mình làm theo cách của mình nên cx chưa phải là chính xác nhé.)
Theo bài ra ta có : \(\left(x-y\right)\div\left(x+y\right)\div xy=1\div7\div24\)
\(\Rightarrow\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{\left(x-y\right)+\left(x+y\right)}{1+7}\\ =\dfrac{x-y+x+y}{8}\\ =\dfrac{\left(x+x\right)-\left(y-y\right)}{8}\\ =\dfrac{2x}{8}\\ =\dfrac{x}{4}\)
Tương tự :
\(\dfrac{x+y}{7}=\dfrac{x-y}{1}=\dfrac{\left(x+y\right)-\left(x-y\right)}{7-1}\\ =\dfrac{x+y-x+y}{6}\\ =\dfrac{\left(x-x\right)+\left(y+y\right)}{6}\\ =\dfrac{2y}{6}\\ =\dfrac{y}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xy}{24}=\dfrac{x}{4}\\\dfrac{xy}{24}=\dfrac{y}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4xy=24x\\3xy=24y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=\dfrac{24x}{4x}\\x=\dfrac{24y}{3y}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=6\\x=8\end{matrix}\right.\)
Vậy \(x;y=\left\{6;8\right\}\)