Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\Rightarrow M=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)
Xét \(a+b+c\ne0\) ta có:\(\frac{a-b+c}{b}=\frac{b-c+a}{c}=\frac{c-a+b}{a}=\frac{a-b+c+b-c+a+c-a+b}{a+b+c}=1\)
\(\Rightarrow\hept{\begin{cases}a-b+c=b\\b-c+a=c\\c-a+b=a\end{cases}}\Rightarrow\hept{\begin{cases}a+c=2b\\a+b=2c\\b+c=2a\end{cases}}\Rightarrow M=\frac{2a.2b.2c}{abc}=8\)
#)Giải :
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
\(\Leftrightarrow\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
TH1 : \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\Leftrightarrow M=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1}\)
TH2 : \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=1\)
\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\Rightarrow\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\Rightarrow}M=\frac{2c.2b.2a}{abc}=8}\)
Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)
\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)=b\left(c+a\right)\)
\(\Rightarrow ac+bc=ab+ac=bc+ab\)
Lại có: \(ac+bc=ab+ac\)\(\Rightarrow bc=ab\)\(\Rightarrow a=c\) (1)
\(ab+ac=bc+ab\)\(\Rightarrow ac=bc\)\(\Rightarrow a=b\) (2)
Từ (1) và (2) \(\Rightarrow a=b=c\)
Ta có: \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+b.b^2+c.c^2}{a^3+b^3+c^3}=\frac{a^3+b^3+c^3}{a^3+b^3+c^3}=1\)
Áp dụng t/c dttsbn:
\(\dfrac{a+b+c-2020d}{d}=\dfrac{b+c+d-2020a}{a}=\dfrac{c+d+a-2020b}{b}=\dfrac{d+a+b-2020c}{c}=\dfrac{3\left(a+b+c+d\right)-2020\left(a+b+c+d\right)}{a+b+c+d}=-2017\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c-2020d=-2017d\\b+c+d-2020a=-2017a\\c+d+a-2020b=-2017b\\d+a+b-2020c=-2017c\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a+b+c=3d\\b+c+d=3a\\c+d+a=3b\\d+a+b=3c\end{matrix}\right.\Rightarrow a=b=c=d\)
\(F=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\\ F=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=4\)
Th1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{\left(-a\right)+b+c}{a}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{\left(-a\right)+b+c}{a}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào b/t A. ta có:
\(A=\frac{aaa}{\left(a+a\right).\left(a+a\right).\left(a+a\right)}=\frac{aaa}{2a.2a.2a}=\frac{aaa}{8aaa}=\frac{1}{8}\)
th2: a+b+c = 0
=> a+b=-c
b+c=-a
c+a=-b
thay a+b=-c, b+c=-a, c+a=-b vào b/t A ta có:
\(A=\frac{abc}{\left(-c\right).\left(-a\right).\left(-b\right)}=-1\)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
Ta có :
a+b−cc=b+c−aa=c+a−bb=a+b−c+b+c−a+c+a−bc+a+b=a+b+ca+b+c=1a+b−cc=b+c−aa=c+a−bb=a+b−c+b+c−a+c+a−bc+a+b=a+b+ca+b+c=1
→a+bc−1=b+ca−1=c+ab−1=1→a+bc−1=b+ca−1=c+ab−1=1
→a+bc=b+ca=c+ab=2→a+bc=b+ca=c+ab=2
→a+bc.b+ca.c+ab=2.2.2=8→a+bc.b+ca.c+ab=2.2.2=8
→a+ba.b+cb.c+ac=8→a+ba.b+cb.c+ac=8
→(1+ba)(1+cb)(1+ac)=8→(1+ba)(1+cb)(1+ac)=8
→M=8
Bạn nhớ là cái này ko phải mình lm đc đây làm mình tìm đc thui nhá =<
Em nên gõ công thức trực quan để đề bài được rõ ràng nhé