Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x và y là các số tự nhiên bất kì \(\left(x,y\in N\right)\)
Bởi vì chữ số tận cùng là 5
10xy5 chia hết cho 5. => x \(\in\left\{0;1;2;...;9\right\}\)
y \(\in\left\{0;1;2;...;9\right\}\)
(Dễ mà bạn. Số chia hết cho 5 tận cùng là 0 hoặc 5, mà đề bài có 10xy5 chia hết cho 5 rồi thì x và y là gì chẳng được.)
a,gọi ƯCLN(2n+1,3n+1)=d(d\(\inℕ^∗\))
\(\Rightarrow\)(2n+1)\(⋮\)d
(3n+1)\(⋮\)d
\(\Rightarrow\)(6n+3)\(⋮\)d
(6n+2)\(⋮\)d
\(\Rightarrow\)(6n+3-6n-2)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
Mà Ư(1)=1
\(\Rightarrow\)ƯCLN(2n+1,3n+1)=1
Vậy ƯCLN(2n+1,3n+1)=1
b,Còn phần b thì bn giải tương tự nhé
Họk tốt nha
Ta có : \(\left(5x-3\right)^2-\frac{1^2}{64}=0\)
\(\Leftrightarrow\left(5x-3\right)^2=\frac{1}{64}\)
\(\Leftrightarrow\left(5x-3\right)^2=\left(\frac{1}{8}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=\frac{1}{8}\\5x-3=-\frac{1}{8}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=\frac{1}{8}+3\\5x=-\frac{1}{8}+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=\frac{25}{8}\\5x=\frac{23}{8}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{25}{8}.\frac{1}{5}\\x=\frac{23}{8}.\frac{1}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\frac{23}{40}\end{cases}}\)
b) 3x - 7.(5x-1) = 6 - 2.(4-3x)
=> 3x - 35x + 7 = 6 - 8 + 6x
=> 3x - 35x - 6x = 6-8 -7
-38x = -9
x = 9/38
1.
a, => 21-x+3 < 0
=> 24-x < 0
=> x < 24
b, => 7+x > 0
=> x > -7
c, => x-1 < 0 ; x+2 > 0 ( vì x-1 < x+2 )
=> x < 1 ; x > -2
=> -2 < x < 1
Tk mk nha
3, 2x-(-3)=7
2x =7+(-3)
2x =4
x =4:2
x =2
Vậy x=2
Bài 3 : 2x - (-3) = 7
2x = 7 + (-3)
2x = -10
x = -10 : 2
x = -5
Vậy x = -5
Bài 4 :
a, -10 < x < 8
=> x \(\in\) { -9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7}
Tổng của tất cả số x là : -9+(-8)+(-7)+7+(-6)+6+(-5)+5+(-4)+4+(-3)+3+(-2)+2+(-1)+1+0 = -9 + (-8) = -17
b, -4 < x < 4
=> x \(\in\) { -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 }
Tổng của tất cả các giá trị x là : (-3)+3+(-2)+2+(-1)+1+0=0
c, lxl=6
=> x=6 hoắc x = -6