K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABH vuông tại H và ΔDBH vuông tại H có

BH chung

HA=HD(gt)

Do đó: ΔABH=ΔDBH(hai cạnh góc vuông)

Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

mà tia BH nằm giữa hai tia BA,BD

nên BH là tia phân giác của \(\widehat{ABD}\)(đpcm)

b) Xét ΔACH vuông tại H và ΔDCH vuông tại H có

CH chung

AH=DH(gt)

Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)

Suy ra: CA=CD(hai cạnh tương ứng)

Ta có: ΔABH=ΔDBH(cmt)

nên BA=BD(hai cạnh tương ứng)

Xét ΔABC và ΔDBC có 

BA=BD(cmt)

BC chung

CA=CD(cmt)

Do đó: ΔABC=ΔDBC(c-c-c)

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

2 tháng 12 2023

loading... a) Xét hai tam giác vuông: ∆ABH và ∆DBH có:

BH là cạnh chung

HA = HD (gt)

⇒ ∆ABH = ∆DBH (hai cạnh góc vuông)

⇒ ∠ABH = ∠DBH (hai góc tương ứng)

⇒ BH là tia phân giác của ∠ABD

b) Do ∆ABH = ∆DBH (cmt)

⇒ AB = DB (hai cạnh tương ứng)

Do ∠ABH = ∠DBH (cmt)

⇒ ∠ABC = ∠DBC

Xét ∆ABC và ∆DBC có:

AB = DB (cmt)

∠ABC = ∠DBC (cmt)

AC là cạnh chung

⇒ ∆ABC = ∆DBC (c-g-c)

c) Do ∆ABC = ∆DBC (cmt)

⇒ ∠BAC = ∠BDC = 90⁰ (hai góc tương ứng)

⇒ BD ⊥ CD

 

a: Xét ΔCAD có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCAD cân tại C

b: Xet ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

=>ΔCAB=ΔCDB

a: Xét ΔCAD có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCAD cân tại C

b: Xet ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

=>ΔCAB=ΔCDB

26 tháng 4 2023

Cảm ơn cậu!yeu

19 tháng 12 2016

A B C D H

a) Xét \(\Delta BHA\) và \(\Delta BHD\) có:

  • BH là cạnh chung
  • \(\widehat{BHA}=\widehat{BHD}\) (\(\widehat{BHA}=90^o\) mà \(\widehat{BHA}\) và \(\widehat{BHD}\) kề bù => \(\widehat{BHD}=90^o=\widehat{BHA}\))
  • AH=HD (giả thiết đề bài)

=>\(\Delta BHA\)=\(\Delta BHD\) (c.g.c) => \(\widehat{HBA}=\widehat{HBD}\) (2 góc tương ứng) => BC là tia phân giác của góc BAD

b) Xét \(\Delta ABC\) và \(\Delta DBC\) có:

  • AB=BD (vì \(\Delta BHA\)= mà AB và BD là 2 cạnh tương ứng)
  •   (vì = mà  và  là 2 góc tương ứng)
  • BC là cạnh chung  

  

​=>\(\Delta ABC\) =\(\Delta DBC\) ( c.g.c)

Vậy bài toán đã được chứng minh.

19 tháng 12 2016

bạn làm lại câu B dc ko ạ, ko rõ cko lắm ạ

a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có

BH chung

HA=HD

Do đó: ΔAHB=ΔDHB

b: Ta co: ΔAHB=ΔDHB

nên góc ABH=góc DBH

=>BH là phân giác của góc ABD
Ta có: ΔBAD cân tại B

mà BC là đường cao

nên BC là trung trực của AD

c: Xét ΔABC và ΔDBC có

BA=BD

góc ABC=góc DBC

BC chung

Do đó: ΔABC=ΔDBC