K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

A B C D H

a) Xét \(\Delta BHA\) và \(\Delta BHD\) có:

  • BH là cạnh chung
  • \(\widehat{BHA}=\widehat{BHD}\) (\(\widehat{BHA}=90^o\) mà \(\widehat{BHA}\) và \(\widehat{BHD}\) kề bù => \(\widehat{BHD}=90^o=\widehat{BHA}\))
  • AH=HD (giả thiết đề bài)

=>\(\Delta BHA\)=\(\Delta BHD\) (c.g.c) => \(\widehat{HBA}=\widehat{HBD}\) (2 góc tương ứng) => BC là tia phân giác của góc BAD

b) Xét \(\Delta ABC\) và \(\Delta DBC\) có:

  • AB=BD (vì \(\Delta BHA\)= mà AB và BD là 2 cạnh tương ứng)
  •   (vì = mà  và  là 2 góc tương ứng)
  • BC là cạnh chung

 

​=>\(\Delta ABC\)=\(\Delta DBC\) ( c.g.c)

Vậy bài toán đã được chứng minh.

19 tháng 12 2016

bạn làm lại câu B dc ko ạ, ko rõ cko lắm ạ

A B D H C

a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:

\(AH=DH\left(gt\right)\)

BH là cạnh chung

\(\widehat{AHB}=\widehat{DHB}\left(=90^0\right)\)

\(\Rightarrow\Delta ABH=\Delta DBH\left(c.g.c\right)\)

b) Vì \(\Delta ABH=\Delta DBH\left(cmt\right)\)

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )

=> BC là tia phân giác \(\widehat{ABD}\)( đpcm )

21 tháng 3 2020

A)Xét t/giác AHB và t/giác DHB có

    AH=AD(gt)

  Góc AHB=góc DHB=900

  BH là cạnh chung

Suy ra t/giác AHB=t/giác DHB(c-g-c)

B)Ta có Góc ABH=góc DBH( t/giác ABH=t/giác DBH)

Suy ra :BC là tia phân giác của góc ABD

C)Xét t/giác AHM vuông tại H và t/giác FNM vuông tại N 

  AM=FM(gt)

  Góc AHM= góc FMN(2 góc đối đỉnh)

Suy ra t/giác AHM =t/giác FNM( cạnh huyền -góc nhọn)

Suy ra AH=NF (2 cạnh tương ứng)

Mà AH=HD (gt)

Suy ra NF=HD

Chúc bn hc tốt

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

16 tháng 12 2016


A B C D E H M

16 tháng 12 2016

Làm tiếp nha:

Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành.

=> \(\hept{\begin{cases}AB=CE\left(1\right)\\ABllCE\end{cases}}\)

a ) xét \(\Delta ABM\)và \(\Delta ECM\)có:

\(\hept{\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}}\)

---> \(\Delta ABM=\Delta ECM\left(c.c.c\right)\)

b) Xét \(\Delta ABD\) có BH là đường cao đồng thời đường trung tuyến nên \(\Delta ABD\) cân tại B.

---> BC là phân giác của ABD

\(\Delta ABD\)cân tại B ---> AB = BD (2)

Từ (1),(2) ---> BD = CE

b: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có 

CH chung

HA=HD

Do đó: ΔCHA=ΔCHD

Suy ra: CA=CD

29 tháng 12 2021

Đề thiếu rồi bạn

a: Xét ΔAEH có

AB vừa là đường cao, vừa là trung tuyến

=>ΔAEH cân tại A

=>AE=AH

b: Xét ΔAHF có

AC vừa là đường cao, vừa là trung tuyến

=>ΔAHF cân tại A

=>AH=AF=AE

a) Xét ΔABH vuông tại H và ΔDBH vuông tại H có

BH chung

HA=HD(gt)

Do đó: ΔABH=ΔDBH(hai cạnh góc vuông)

Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

mà tia BH nằm giữa hai tia BA,BD

nên BH là tia phân giác của \(\widehat{ABD}\)(đpcm)

b) Xét ΔACH vuông tại H và ΔDCH vuông tại H có

CH chung

AH=DH(gt)

Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)

Suy ra: CA=CD(hai cạnh tương ứng)

Ta có: ΔABH=ΔDBH(cmt)

nên BA=BD(hai cạnh tương ứng)

Xét ΔABC và ΔDBC có 

BA=BD(cmt)

BC chung

CA=CD(cmt)

Do đó: ΔABC=ΔDBC(c-c-c)

13 tháng 10 2019

https://h.vn/hoi-dap/question/143424.html

Bn tham khảo nhé

#học tốt#

13 tháng 10 2019

TL ;

Tham khảo tại : https://olm.vn/hoi-dap/detail/200191952975.html

Hk tốt