K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

Xét ΔAFH vuông tại F ta có:

AH2 = AF2 + HF2 (đl pytago)

Mà : AH=BK (ABHK là hình bình hành)

⇒ BK2 = AF2 + HF2

Xét ΔDKF vuông tại F có:

DK2 = DF2 + FK2 (đl pytago)

Suy ra: BH2 +DK2 = AF2 + HF2 + DF2 + FK2 (cmt) (1)

Xét ΔAFD vuông tại có

AD2 = AF2 + DF2 (đl pytago) (2)

Xét ΔHFK vuông tại F có

HK2 = HF2 + FK2 (đl pytago) (3)

Thay (2) và (3) vào (1) ta có:

BH2 +DK2 = AD2 + HK2

Xét ΔAED vuông tại D có

AE2 = AD2 +DE2 (đl Pytago)

Mà: AE=BD (ABED là hình vuông)

⇒ BD2 = AD2 +DE2

Ta có : BH2 +DK2 = AD2 + HK2 (cmt)

Hay: BH2 +DK2 = AD2 + (DC/2)2 (vì HK là đường trung bình ΔDFC)

Suy ra: BH2 +DK2 = BD2 ( vì AD2 +DE2 = AD2 + (DC/2)2)

⇒ Δ BKD vuông tại K ( định lý Pytago đảo)

⇒ BK ⊥ DK

24 tháng 12 2018

Tất cả các chữ BH đổi lại thành BK hết nha!!! (#N viết lộn)

31 tháng 10 2022

Bài 1:

a: Xét tứ giác ABEF có

BE//AF

BE=AF

BE=BA

Do đó: ABEF là hình thoi

b: Xét ΔBIE có BI=BE

nên ΔBIE cân tại B

mà góc IBE=60 độ

nên ΔBIE đều

=>góc I=60 độ

Xét tứ giác AFEI có

EF//AI

góc I=góc A

Do đó AFEI là hình thang cân

c: Xét ΔBAD có

BF là đường trung tuyến

BF=AD/2

Do đó: ΔBAD vuông tại B

=>DB vuông góc với BI

Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

mà DB vuông góc với BI

nên BICD là hình chữ nhật

d: Xét ΔAED có

EF la trung tuyến

FE=DA/2

Do đó: ΔAED vuông tại E

=>góc AED=90 độ

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua Ia) Chứng minh tứ...
Đọc tiếp

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.

Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.

Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.

Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua I

a) Chứng minh tứ giác DKEH là hình chữ nhật.

b) Nếu tam giác DEF vuông cân tại D thì tứ giác DKEH là hình gì ? Vì sao ? Vẽ hình minh họa.

c) Vẽ CA vuông DF ( A thuộc DF). Chứng minh tam giác AHK là tam giác vuông.

Bài 4 : Cho tam giác DEF, gọi M,N lần lượt là trung điểm của DE, DF. Qua F vẽ đường thẳng song song với DE cắt đường thẳng MN tại K

a) Chứng minh tứ giác MEFK là hình bình hành.

b) Biết MN=5 cm. Tính độ dài EF?

Bài 5: Cho tam giác ABC cân tại A. Gọi H,I lần lượt là trung điểm của BC, AC.

a) Tứ giác HIAB là hình gì ? Vì sao?

b) Gọi Q là điểm đối xứng của H qua I. Chứng minh tứ giác AHCQ là hình chữ nhật.

c) Tìm thêm điều kiện của tam giác ABC cân tại A để tứ giác AHCQ là hình vuông.

0

a: Xét tứ giác ABKH có 

AB//HK

AH//BK

Do đó: ABKH là hình bình hành

mà \(\widehat{AHK}=90^0\)

nên ABKH là hình chữ nhật

a: Xét ΔABD có

E là trung điểm của AB

F là trung điểm của AD

Do đó: EF là đường trung bình

=>EF//DB

hay EFDB là hình thang

mà \(\widehat{FDB}=\widehat{EBD}\)

nên EFDB là hình thang cân

b: Ta có: ΔAEF cân tại A

mà AI là đường trung tuyến

nên AI là phân giác của góc EAF

hay AI là phân giác của góc PAQ

Xét tứ giác APIQ có 

\(\widehat{API}=\widehat{AQI}=\widehat{QAP}=90^0\)

Do đó: APIQ là hình chữ nhật

mà AI là tia phân giác của góc PAQ

nên APIQ là hình vuông

Bài 1: 

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: Ta có: AD⊥AC

mà AD//BC

nên BC⊥CA

=>ΔCBA vuông tại C

mà CM là đường trung tuyến

nên CM=MA

=>ΔMCA cân tại M

=>\(\widehat{MAC}=\widehat{MCA}\)

mà \(\widehat{MAC}=\widehat{DCA}\)

nên \(\widehat{MCA}=\widehat{DCA}\)

hay CA là tia phân giác của góc MCD